A165455 Primes p such that p^2 is a sum of three distinct positive cubes.
53, 59, 71, 163, 167, 251, 523, 577, 613, 643, 773, 787, 811, 827, 863, 881, 883, 919, 937, 1097, 1117, 1301, 1567, 1607, 1709, 1777, 1867, 1873, 1877, 1889, 1931, 2161, 2237, 2309, 2447, 2521, 2591, 2647, 2687, 2719, 2843, 2897, 2969, 3011, 3079, 3163
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[Do[Do[d=Sqrt[a^3+b^3+c^3];If[d<=834&&IntegerQ[d]&&PrimeQ[d], AppendTo[lst,d]],{c,b+1,5!,1}],{b,a+1,5!,1}],{a,5!}];Union@lst
Formula
Extensions
Extended beyond 827 by R. J. Mathar, Oct 07 2009
Title corrected by Jeppe Stig Nielsen, Jan 26 2015
Comments