cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165460 The height at the 1/3 point of Jacobi-bridge, computed for 12n+7. a(n) = Sum_{i=0..(4n+2)} J(i,12n+7), where J(i,m) is the Jacobi symbol.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 10, 4, 10, 4, 10, 6, 14, 2, 4, 4, 18, 6, 14, 4, 12, 8, 22, 6, 16, 6, 20, 6, 2, 8, 18, 6, 28, 4, 20, 4, 30, 12, 14, 0, 14, 6, 28, 10, 28, 6, 32, 10, 16, 8, 26, 10, 26, 6, 24, 8, 36, 10, 28, 8, 26, 10, 30, 8, 0, 10, 32, 14, 18, 12, 0, 14, 44, 6, 32, 6, 38, 0, 32, 8, 22
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Comments

Conjecture: a(2n) = 2*A165605(2n) and a(2n+1) = (2/3)*A165605(2n+1). - Antti Karttunen, Oct 05 2009. (If true, then implies also the truth of conjecture in A165462.)

Crossrefs

Programs

  • Mathematica
    Table[Sum[JacobiSymbol[i, 12n + 7], {i, 0, 4n + 2}], {n, 0, 100}] (* Indranil Ghosh, May 13 2017 *)
  • PARI
    a(n) = sum(i=0, 4*n + 2, kronecker(i, 12*n + 7)); \\ Indranil Ghosh, May 13 2017
    
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum([J(i, 12*n + 7) for i in range(4*n + 3)]) # Indranil Ghosh, May 13 2017