A165498 Maximum length of arithmetic progression with difference n such that each term k has tau(k) = n.
1, 3, 1, 8, 1
Offset: 1
Examples
When tau(k) = 4, k cannot be divisible by 9 unless k = 27. An arithmetic progression of 9 terms with difference 4 must have a term divisible by 9, and k=27 is not part of a progression of 9 terms with tau(k)=4, so a(4) must be less than 9. Since a progression of 8 terms is achievable (e.g. starting at 5989), a(4) = 8 is proved.
Comments