A258932 Numbers k such that 10^k + 103 is prime.
1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1
Examples
For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
Crossrefs
Sequences of the type 10^n+k: A049054 (k=3), A088274 (k=7), A088275 (k=9), A095688 (k=13), A108052 (k=19), A108050 (k=21), A108312 (k=27), A107083 (k=31), A107084 (k=33), A135109 (k=37), A135108 (k=39), A108049 (k=43), A108054 (k=49), A135118 (k=51), A135119 (k=57), A135116 (k=61), A135115 (k=63), A135113 (k=67), A135114 (k=69), A135132 (k=73), A135131 (k=79), A137848 (k=81), A135117 (k=87), A110918 (k=91), A135112 (k=93), A135107 (k=97), A110980 (k=99), this sequence (k=103), A258933 (k=109), A165508 (k=111), A248349 (k=123456789), A248351 (k=987654321).
Programs
-
Magma
[n: n in [1..600] | IsPrime(10^n+103)];
-
Mathematica
Select[Range[5000], PrimeQ[10^# + 103] &]
-
PARI
is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(26)-a(28) from Jens Kruse Andersen, Jun 23 2015
Comments