cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165514 The complement of the trapezoidal numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 16, 28, 32, 64, 128, 136, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 32896, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
Offset: 1

Views

Author

Ant King, Sep 23 2009

Keywords

Comments

Trapezoidal numbers (A165513) are polite numbers (A138591) that have a runsum representation which excludes one, and hence that can be depicted graphically by a trapezoid. This sequence is their complement, and Jones and Lord have shown that it is constructed from the powers of 2 (A000079), the perfect numbers (A000396) and those integers of the form 2^(k-1)*(2^k+1) where k is necessarily a power of 2 and 2^k + 1 is a Fermat prime (A019434).
Starting with 4, composite numbers (A002808) not a difference of non-neighboring triangular numbers (A000217). For T(x) - T(y), x - y > 1, where T are the triangular numbers, all other composite numbers can be represented as a triangular number difference. - Ed Pegg Jr, Feb 23 2016
It appears that these are also the numbers k with the property that all noncentral widths of the symmetric representation of sigma(k) are 1's, with a(1) = 1. Omar E. Pol, Mar 04 2023

Examples

			As the fifth integer which does not have a runsum representation which excludes one is 6, then a(5)=6.
		

Crossrefs

Programs

  • Mathematica
    trapezoidal[n_] := Module[{result}, result = {}; Do[sum = 0; start = i; lis = {}; m = i; While[sum < n, sum = sum + m; lis = AppendTo[lis, m]; If[sum == n, AppendTo[result, lis]]; m++], {i, 2, Floor[n/2]}]; result]; Select[Range[10000], trapezoidal[#] == {} &]

Extensions

More terms from Amiram Eldar, Aug 12 2019