A165514 The complement of the trapezoidal numbers.
1, 2, 3, 4, 6, 8, 10, 16, 28, 32, 64, 128, 136, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 32896, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824
Offset: 1
Keywords
Examples
As the fifth integer which does not have a runsum representation which excludes one is 6, then a(5)=6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2577
- Chris Jones and Nick Lord, Characterizing Non-Trapezoidal Numbers, The Mathematical Gazette, Vol. 83, No. 497, July 1999, pp. 262-263.
- Ron Knott, Introducing Runsums
- Jim Smith, Trapezoidal numbers, Mathematics in School, Vol. 26, No. 5 (Nov., 1997), pp. 46-47.
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6.
Programs
-
Mathematica
trapezoidal[n_] := Module[{result}, result = {}; Do[sum = 0; start = i; lis = {}; m = i; While[sum < n, sum = sum + m; lis = AppendTo[lis, m]; If[sum == n, AppendTo[result, lis]]; m++], {i, 2, Floor[n/2]}]; result]; Select[Range[10000], trapezoidal[#] == {} &]
Extensions
More terms from Amiram Eldar, Aug 12 2019
Comments