cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165538 Number of permutations of length n which avoid the patterns 4312 and 3142.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 367, 1568, 6810, 29943, 132958, 595227, 2683373, 12170778, 55499358, 254297805, 1170248190, 5406570910, 25068420955, 116617923611, 544157590706, 2546278167018, 11945937322413, 56180864428301, 264812677643417, 1250853429148333, 5920145717412047
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + Sqrt[1 - 4*x]) / (4*x) - Sqrt[2*(1 + Sqrt[1 - 4*x] - 2*x)*(1 - x)*(1 - 5*x)] / (4*(1-x)*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2024 *)

Formula

G.f. f satisfies: (x^3-2*x^2+x)*f^4+(4*x^3-9*x^2+6*x-1)*f^3+(6*x^3-12*x^2+7*x-1)*f^2+(4*x^3-5*x^2+x)*f+x^3 = 0.
From Vaclav Kotesovec, Jul 06 2024: (Start)
G.f.: (1 + sqrt(1-4*x)) / (4*x) - sqrt(2*(1 + sqrt(1-4*x)-2*x)*(1-x)*(1-5*x)) / (4*(1-x)*x).
a(n) ~ (1 + sqrt(5)) * 5^(n+1) / (16 * sqrt(Pi) * n^(3/2)). (End)

Extensions

Reference corrected by Vincent Vatter, Sep 04 2012
a(0)=1 prepended by Alois P. Heinz, Jul 06 2024