cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A165601 Midpoint height of Jacobi-bridge, computed for 4n+3. a(n) = Sum_{i=0..(2n+1)} J(i,4n+3), where J(i,m) is the Jacobi symbol.

Original entry on oeis.org

1, 1, 3, 2, 3, 3, 1, 3, 6, 4, 3, 5, 6, 4, 9, 2, 3, 7, 2, 5, 9, 6, 6, 8, 0, 5, 9, 8, 6, 10, 6, 5, 15, 2, 9, 10, 0, 7, 12, 10, 3, 11, 6, 2, 15, 8, 6, 13, 12, 9, 12, 0, 9, 14, 12, 7, 15, 12, 6, 15, 1, 6, 21, 12, 12, 13, 6, 11, 0, 6, 9, 14, 12, 8, 24, 10, 9, 19, 0, 10, 12, 12, 9, 18, 18, 1, 15
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[JacobiSymbol[i, 4n + 3], {i, 0, 2n + 1}], {n, 0, 100}] (* Indranil Ghosh, May 13 2017 *)
  • PARI
    a(n) = sum(i=0, 2*n + 1, kronecker(i, 4*n + 3)); \\ Indranil Ghosh, May 13 2017
    
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum([J(i, 4*n + 3) for i in range(2*n + 2)]) # Indranil Ghosh, May 13 2017
Showing 1-1 of 1 results.