A165748 a(n) = (8/9)*(2+7*(-8)^(n-1)).
1, 8, -48, 400, -3184, 25488, -203888, 1631120, -13048944, 104391568, -835132528, 6681060240, -53448481904, 427587855248, -3420702841968, 27365622735760, -218924981886064, 1751399855088528, -14011198840708208
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (-7,8).
Programs
-
Mathematica
Table[(8/9)*(2 + 7*(-8)^(n - 1)), {n, 0, 100}] or LinearRecurrence[{-7,8}, {1,8}, 100] (* G. C. Greubel, Apr 07 2016 *)
-
PARI
x='x+O('x^99); Vec((1+15*x)/(1+7*x-8*x^2)) \\ Altug Alkan, Apr 07 2016
Formula
a(n) = (-8)*a(n-1) + 16 for n>=1, with a(0) = 1.
a(n) = 8*a(n-2) - 7*a(n-1), a(0)=1, a(1)=8.
G.f.: (1+15x)/(1+7x-8x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*7^(n-k).
From G. C. Greubel, Apr 07 2016: (Start)
a(n) = -7*a(n-1) + 8*a(n-2).
E.g.f.: (1/9)*(16*exp(x) - 7*exp(-8*x)). (End)