cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165791 Number of tilings of a 4 X n rectangle using dominoes and right trominoes.

Original entry on oeis.org

1, 1, 11, 55, 380, 2319, 15171, 96139, 619773, 3962734, 25445515, 163048957, 1045897075, 6705473761, 43001795070, 275730928993, 1768128097215, 11337760387473, 72702310606249, 466192677008538, 2989403530821497, 19169143325987983, 122919655766448729
Offset: 0

Views

Author

Alois P. Heinz, Sep 26 2009

Keywords

Examples

			a(2) = 11, because there are 11 tilings of a 4 X 2 rectangle using dominoes and right trominoes:
  .___. .___. .___. ._._. ._._. .___. .___. .___. .___. .___. .___.
  |___| |___| |_._| | | | | | | |___| |___| | ._| |_. | | ._| |_. |
  |___| |_._| | | | |_|_| |_|_| | ._| |_. | |_| | | |_| |_| | | |_|
  |___| | | | |_|_| |___| | | | |_| | | |_| |___| |___| | |_| |_| |
  |___| |_|_| |___| |___| |_|_| |___| |___| |___| |___| |___| |___|  .
		

Crossrefs

Column k=4 of A219987.

Programs

  • Maple
    a:= n-> (Matrix([[619773, 96139, 15171, 2319, 380, 55, 11, 1, 1]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [4, 21, -25, -65, -17, 24, -11, -15, 9][i] else 0 fi)^n)[1,9]: seq(a(n), n=0..25);
  • Mathematica
    a[n_] := {619773, 96139, 15171, 2319, 380, 55, 11, 1, 1} . MatrixPower[ Table[ Which[i == j-1, 1, j == 1, {4, 21, -25, -65, -17, 24, -11, -15, 9}[[i]], True, 0], {i, 1, 9}, {j, 1, 9}], n] // Last; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 04 2013, translated and adapted from Alois P. Heinz's Maple program *)

Formula

G.f.: (2*x^8-5*x^7+2*x^6-x^5-19*x^4-15*x^3+14*x^2+3*x-1) / (9*x^9-15*x^8-11*x^7+24*x^6-17*x^5-65*x^4-25*x^3+21*x^2+4*x-1).