A165808 Expansion of x*(403+2967*x+1047*x^2-x^3)/(1-x)^4.
403, 4579, 16945, 41917, 83911, 147343, 236629, 356185, 510427, 703771, 940633, 1225429, 1562575, 1956487, 2411581, 2932273, 3522979, 4188115, 4932097, 5759341, 6674263, 7681279, 8784805, 9989257, 11299051, 12718603, 14252329, 15904645, 17679967, 19582711
Offset: 1
Examples
f(x) = x^3 + 2*x + 11. When x = 2 + 3*i, we get f(x) = -31 + 15*i. x + f(x) = -29 + 18*i. f(-29 + 18*i) = 3752 + 39618*i. When this value is divided by (-31 + 15*i) we get 403 - 1083*i; needless to say, PARI takes care of necessary rationalization.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {403, 4579, 16945, 41917}, 100](* G. C. Greubel, Apr 08 2016 *)
-
PARI
Vec((403+2967*x+1047*x^2-x^3)/(1-x)^4+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
Formula
From R. J. Mathar, Sep 30 2009: (Start)
a(n) = 1-13*n-321*n^2+736*n^3.
G.f.: x*(403+2967*x+1047*x^2-x^3)/(1-x)^4. (End)
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1 + 402*x + 1887*x^2 + 736*x^3)*exp(x) - 1. [corrected by Jason Yuen, Aug 14 2025] (End)
Extensions
More terms from R. J. Mathar, Sep 30 2009
Edited by Jon E. Schoenfield, Dec 12 2013
Comments