A354273 Square array read by ascending antidiagonals: A(n,k) = k^Omega(n).
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 4, 1, 1, 2, 9, 4, 5, 1, 1, 4, 3, 16, 5, 6, 1, 1, 2, 9, 4, 25, 6, 7, 1, 1, 8, 3, 16, 5, 36, 7, 8, 1, 1, 4, 27, 4, 25, 6, 49, 8, 9, 1, 1, 4, 9, 64, 5, 36, 7, 64, 9, 10, 1, 1, 2, 9, 16, 125, 6, 49, 8, 81, 10, 11, 1, 1, 8, 3, 16, 25, 216, 7, 64, 9, 100, 11, 12, 1
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 4, 9, 16, 25, 36, 49, 64, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 4, 9, 16, 25, 36, 49, 64, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 8, 27, 64, 125, 216, 343, 512, ... ...
Links
- K. L. Verma, On an arithmetical functions involving general exponential, Palestine Journal of Mathematics Vol. 11(2)(2022), 496-504.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=k^PrimeOmega[n]; Flatten[Table[A[n-k+1,k],{n,13},{k,n}]]