A165910 Wiener indices of Fibonacci trees of order k.
1, 4, 18, 62, 210, 666, 2063, 6226, 18484, 54100, 156620, 449268, 1278981, 3617544, 10175590, 28485218, 79406350, 220536910, 610487875, 1684974790, 4638298536, 12737460744, 34902844728, 95449821672, 260554112425, 710056257196
Offset: 1
Keywords
Examples
W(T(1)) = 1 because T(1) is a single edge. W(T(2)) = 4 because T(2) is a path on three vertices.
References
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
Links
- K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wienerindex of binomial trees and Fibonacci trees, arXiv:0910.4432
- Index entries for linear recurrences with constant coefficients, signature (5, -3, -14, 10, 14, -5, -3, 1).
Formula
The Wiener index W(T(f(k))) of the Fibonacci tree T(f(k)) satisfies the following recurrence: W(T(f(k))) = W(T(f(k-1))) + W(T(f(k-2))) + F(k+1) D(T(f), (k-2)) + F(k) D(T(f), (k-1)) + F(k+1) F(k), where D(T(f), k) = (1/5) (k F(k+2) + (k+2) F(k)) and F(k) is the k-th Fibonacci number.
D(T(f),k) = A001629(k+1). Conjecture: G.f. x*(1-x+x^2-2*x^3)/( (1-x^2-x) * (1+x)^2 * (x^2-3*x+1)^2 ). [From R. J. Mathar, Apr 19 2010]
Comments