A165911 a(n) = squarefree kernel (or radical) of a(n-1) + a(n-2), with a(0)=0 and a(1)=1.
0, 1, 1, 2, 3, 5, 2, 7, 3, 10, 13, 23, 6, 29, 35, 2, 37, 39, 38, 77, 115, 6, 11, 17, 14, 31, 15, 46, 61, 107, 42, 149, 191, 170, 19, 21, 10, 31, 41, 6, 47, 53, 10, 21, 31, 26, 57, 83, 70, 51, 11, 62, 73, 15, 22, 37, 59, 6, 65, 71, 34, 105, 139, 122, 87, 209, 74, 283, 357, 10
Offset: 0
Keywords
Links
- Franklin T. Adams-Watters and N. J. A. Sloane, Table of n, a(n) for n = 0..1688, May 07 2016 [First 1000 terms from Franklin T. Adams-Watters]
Crossrefs
Programs
-
Mathematica
nxt[{a_,b_}]:={b,Select[Divisors[a+b],SquareFreeQ][[-1]]}; NestList[nxt,{0,1},70][[All,1]] (* Harvey P. Dale, Jul 31 2018 *)
-
PARI
rad(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,1]) v=vector(100,n,1);for(n=3,100,v[n]=rad(v[n-1]+v[n-2]))
-
Python
from operator import mul from sympy import primefactors from functools import reduce def rad(n): return 1 if n<2 else reduce(mul, primefactors(n)) l=[0, 1] for n in range(2, 101): l.append(rad(l[n - 1] + l[n - 2])) print(l) # Indranil Ghosh, Jun 03 2017
Comments