A165920 Number of 2-elements orbits of S3 action on irreducible polynomials of degree 3n, n > 0, over GF(2).
1, 0, 1, 1, 2, 3, 6, 10, 19, 33, 62, 112, 210, 387, 728, 1360, 2570, 4845, 9198, 17459, 33288, 63519, 121574, 232960, 447392, 860265, 1657009, 3195465, 6170930, 11930100, 23091222, 44738560, 86767016, 168428805, 327235602, 636289024, 1238188770, 2411205111, 4698767640, 9162588158, 17878237850
Offset: 1
Examples
Illustrating computation via L = A050186, cf. COMMENTS: a(1) = [L(1,0)] = 0. a(2) = [L(2,2)] = 0. a(3) = L(3,1)/3 = 3/3 = 1. a(4) = ([L(4,0)] + L(4,3))/4 = 4/4 = 1. a(5) = (L(5,2) + [L(5,5)])/5 = 10/5 = 2. In [...] are terms L(n,0) = L(n,n) = 0.
Links
- Robert Israel, Table of n, a(n) for n = 1..3331
- J. E. Iglesias, Enumeration of polytypes of MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 176-194, Table 1.
- J.-F. Michon, P. Ravache, On different families of invariant irreducible polynomials over F_2, Finite fields & Applications 16 (2010) 163-174.
Crossrefs
Programs
-
Maple
f:= proc(n) local D,d; D:=remove(d -> (n/3/d)::integer, numtheory:-divisors(n)); add(numtheory:-mobius(n/d)*(2^d - (-1)^d),d=D)/(3*n) end proc: map(f, [$1..100]); # Robert Israel, Jul 14 2019
-
Mathematica
a[n_] := Sum[If[Mod[n/d, 3] == 0, 0, MoebiusMu[n/d]*(2^d - (-1)^d)/(3n)], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023 *)
-
PARI
L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) ); a(n) = sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n; vector(55,n,a(n)) /* Joerg Arndt, Jun 28 2012 */
-
PARI
A165920(n,k=(1-n)%3)=sum(i=0,(n-k)\3,A050186(n,k+3*i))\n \\ For illustration. - M. F. Hasler, Sep 30 2018
Formula
a(n) = (sum_{d|n, n/d != 0 mod 3} mu(n/d)*(2^d - (-1)^d))/(3n).
Comments