cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011957 Number of ZnS polytypes that repeat after n layers.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 6, 10, 18, 31, 59, 105, 198, 365, 688, 1285, 2438, 4599, 8755, 16647, 31806, 60787, 116570, 223696, 430290, 828514, 1598025, 3085465, 5965612, 11545611, 22370304, 43383539, 84216330, 163617801, 318148208, 619094385, 1205609454, 2349383925, 4581307186, 8939118925, 17452582356
Offset: 1

Views

Author

Keywords

Comments

Also the number of orbits of the symmetric group S3 action on irreducible polynomials of degree n>1 over GF(2). [Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Oct 04 2009]

Crossrefs

Cf. A000048 (number of 3-elements orbits).
Cf. A165920 (number of 2-elements orbits).
Cf. A165921 (number of 6-elements orbits).

Programs

  • Mathematica
    L[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#]*Binomial[n/#, k/#] &];
    A165920[n_] := Sum[If[(n + k) ~Mod~ 3 == 1, L[n, k], 0], {k, 0, n}]/n;
    A001037[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[#]*2^(n/#) &]/n];
    A000048[n_] := DivisorSum[n, (# ~Mod~ 2)*(MoebiusMu[#]*2^(n/#)) &]/(2*n);
    A011957[n_] := Module[{an}, If[n <= 2, Return[n - 1]]; an =A001037[n]/6;
      If[n ~Mod~ 2 == 0, an += 1/2*A000048[n/2]];
      If[n ~Mod~ 3 == 0, an += 2/3*A165920[n/3]];
      Return[an]
    ];
    Table[A011957[n], {n, 1, 50}] (* Jean-François Alcover, Dec 02 2015, adapted from Joerg Arndt's PARI script *)
  • PARI
    L(n, k)=sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );
    A165920(n)=sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n;
    A001037(n)=if(n<1, n==0, sumdiv(n, d, moebius(d)*2^(n/d))/n);
    A000048(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n);
    A165921(n)=
    {
        my(an);
        if ( n<=2, return(0) );
        an = A001037(n);
        if (n%2==0, an -= 3*A000048(n/2) );
        if (n%3==0, an -= 2*A165920(n/3) );
        an /= 6;
        return( an );
    }
    A011957(n)=
    {
        my(an);
        an = A165921(n);
        if (n%2==0, an += A000048(n/2) );
        if (n%3==0, an += A165920(n/3) );
        return( an );
    }
    /* simplified version (merging the routines for A011957 and A165921 above): */
    A011957(n)=
    {
        my(an);
        if ( n<=2, return(n-1) );
        an = A001037(n) / 6;
        if (n%2==0, an += 1/2 * A000048(n/2) );
        if (n%3==0, an += 2/3 * A165920(n/3) );
        return( an );
    }
    /* Joerg Arndt, Jul 12 2012 */

Formula

(see PARI code)

Extensions

Incorrect formula removed and terms verified by Joerg Arndt, Jul 12 2012

A165912 Number of alternating polynomials of degree 3n in GF(2)[X], n>0.

Original entry on oeis.org

2, 0, 2, 2, 4, 6, 12, 20, 38, 66, 124, 224, 420, 774, 1456, 2720, 5140, 9690, 18396, 34918, 66576, 127038, 243148, 465920, 894784, 1720530, 3314018, 6390930, 12341860, 23860200, 46182444, 89477120, 173534032, 336857610, 654471204, 1272578048, 2476377540, 4822410222, 9397535280
Offset: 1

Views

Author

Jean Francis Michon and Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Sep 30 2009

Keywords

Comments

We define an alternating polynomial as follows: let I be the set of irreducible polynomials of degree > 1 over GF(2) and Sym_3 the symmetric group on 3 elements. For a polynomial P in I of degree n, we define P*(X) = X^n P(1/X) and P+(X) = P(X+1). The operators define an action of the group Sym_3 over I. Then an alternating polynomial is defined by the property that P*=P+.
The degree of an alternating polynomial is always 0 mod 3. The numbers in the sequence are always even. These polynomials are invariant under the action of the alternating subgroup Alt_3 of S3.

Crossrefs

A001037 is the enumeration by degree of the polynomials of the set I.
A000048 is the enumeration by degree of the polynomials such that P=P* (self-reciprocal polynomials) which is the same as the one for the polynomials such that P=P+ or P=((P+)*)+.

Programs

  • Mathematica
    a[n_] := 2*DivisorSum[n, Boole[Mod[n/#, 3] != 0] MoebiusMu[n/#]*(2^# - (-1)^#) &]/(3 n); Array[a, 40] (* Jean-François Alcover, Dec 03 2015, adapted from PARI *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%3!=0, L(n, k), 0 ) ) / n;
    vector(55,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */

Formula

a(n) = 2*(sum_{d|n, n/d != 0 mod 3} mu(n/d)*(2^d - (-1)^d))/(3n).
a(n) = 2 * A165920(n).

Extensions

Edited by N. J. A. Sloane, May 15 2010

A165921 Number of 6-elements orbits of S3 action on irreducible polynomials of degree n > 1 over GF(2).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 9, 15, 31, 53, 105, 189, 363, 672, 1285, 2407, 4599, 8704, 16641, 31713, 60787, 116390, 223696, 429975, 828495, 1597440, 3085465, 5964488, 11545611, 22368256, 43383477, 84212475, 163617801, 318140816, 619094385, 1205595657, 2349383715, 4581280972, 8939118925, 17452532040, 34093383807
Offset: 2

Views

Author

Jean Francis Michon, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Sep 30 2009

Keywords

Comments

The terms are denoted h_6 in the Michon/Ravache reference.

References

  • J. E. Iglesias, Enumeration of polytypes MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 178-194, Table 1.

Crossrefs

A001037 is the enumeration by degree of the irreducible polynomials over GF(2), A000048 is the number of 3-elements orbits, A165920 is the number of 2-elements orbits.
Cf. A011957.
Cf. A096060 = A165921 o A000040 (on 3..oo), a subsequence of this sequence.

Programs

  • Mathematica
    L[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#]*Binomial[n/#, k/#] &];
    A165920[n_] := Sum[If[(n + k) ~Mod~ 3 == 1, L[n, k], 0], {k, 0, n}]/n;
    A001037[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[#]*2^(n/#) &]/n];
    A000048[n_] := DivisorSum[n, Mod[#, 2]*(MoebiusMu[#]*2^(n/#)) &]/(2*n);
    A165921[n_] := Module[{an},
      If[n <= 2, Return[0]];
      an = A001037[n];
      If[Mod[n, 2] == 0, an -= 3*A000048[n/2]];
      If[Mod[n, 3] == 0, an -= 2*A165920[n/3]];
      an /= 6;
      Return[an]
    ];
    Table[A165921[n], {n, 2, 50}] (* Jean-François Alcover, Dec 02 2015, adapted from Joerg Arndt's PARI script *)
  • PARI
    L(n, k)=sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );
    A165920(n)=sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n;
    A001037(n)=if(n<1, n==0, sumdiv(n, d, moebius(d)*2^(n/d))/n);
    A000048(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n);
    A165921(n)= /* this sequence */
    {
        my(an);
        if ( n<=2, return(0) );
        an = A001037(n);
        if (n%2==0, an -= 3*A000048(n/2) );
        if (n%3==0, an -= 2*A165920(n/3) );
        an /= 6;
        return( an );
    }
    /* Joerg Arndt, Jul 12 2012 */
    
  • PARI
    A165921(n)=if(n>2,A001037(n)-if(!bittest(n,0),3*A000048(n\2))-if(n%3==0,2*A165920(n\3)))\6 \\ Based on Joerg Arndt's code from Jul 12 2012. Take up-to-date code for other sequences from the respective record. - M. F. Hasler, Sep 27 2018

Formula

(see PARI code)
a(p) = (2^(p-1)-1)/3p = A096060(n) for all primes p = prime(n) >= 5, n >= 3: A165921 o A000040 = A096060 on the domain [3..oo) of that sequence. - M. F. Hasler, Sep 27 2018

Extensions

Incorrect formula removed and more terms added by Joerg Arndt, Jul 12 2012
Showing 1-3 of 3 results.