A165940 G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = exp( Sum_{n>=1} x^n/[n*2^(n^2)] ).
1, 2, 10, 152, 7684, 1352096, 852120928, 1960591940480, 16697154282192928, 531801639623740649984, 63854080509077223292639744, 29089348119991257994736112048128
Offset: 0
Keywords
Examples
G.f.: 1 + 2*x/2^2 + 10*x^2/2^6 + 152*x^3/2^12 + 7684*x^4/2^20 +... = exp( x/2 + x^2/(2*2^4) + x^3/(3*2^9) + x^4/(4*2^16) +... ). Evaluated at x=1: Sum_{n>=0} a(n)/2^(n^2+n) = 1.7021716250154556344906565654972646...
Crossrefs
Cf. A155200.
Programs
-
PARI
{a(n)=2^(n^2+n)*polcoeff(exp(sum(m=1, n+1, 2^(-m^2)*x^m/m)+x*O(x^n)), n)}
Comments