cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166000 Primes p such that p-5, p-3, p+3, and p+5 are divisible by cubes.

Original entry on oeis.org

12253, 14747, 65173, 83003, 93253, 95747, 109139, 147253, 176747, 213349, 255253, 282253, 284747, 287437, 305267, 311747, 315517, 336253, 338747, 364699, 365747, 444253, 452579, 471253, 525253, 554747, 583789, 633253, 716747, 741253, 743747
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A089201. - R. J. Mathar, Dec 08 2015
Contains all primes == 12253 (mod 27000), and therefore the sequence is infinite. - Robert Israel, Apr 21 2016

Crossrefs

Programs

  • Maple
    filter:= proc(p) local d;
      if not isprime(p) then return false fi;
      for d in [-5,-3,3,5] do
         if max(map(t -> t[2], ifactors(p+d)[2])) < 3 then return false fi;
      od;
      true
    end proc:
    select(filter, [seq(t,t=7..10^6,2)]); # Robert Israel, Apr 21 2016
    # alternative
    isA166000 := proc(n)
        if isprime(n) then
                isA046099(n-3) and isA046099(n+3) and isA046099(n-5) and isA046099(n+5) ;
        else
                false;
        end if;
    end proc: # R. J. Mathar, Aug 14 2024
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; q=3;lst={};Do[p=Prime[n];If[f[p-5]>=q&&f[p-3]>=q&&f[p+3]>=q&&f[p+5]>=q,AppendTo[lst,p]],{n,4*8!}];lst
  • PARI
    ncf(n)={vecmax(factor(n)[,2])>2};forprime(p=5,1e7,if(ncf(p+5)&&ncf(p+3)&&ncf(p-3)&&ncf(p-5),print1(p","))) /* Charles R Greathouse IV, Oct 05 2009 */