A165601 Midpoint height of Jacobi-bridge, computed for 4n+3. a(n) = Sum_{i=0..(2n+1)} J(i,4n+3), where J(i,m) is the Jacobi symbol.
1, 1, 3, 2, 3, 3, 1, 3, 6, 4, 3, 5, 6, 4, 9, 2, 3, 7, 2, 5, 9, 6, 6, 8, 0, 5, 9, 8, 6, 10, 6, 5, 15, 2, 9, 10, 0, 7, 12, 10, 3, 11, 6, 2, 15, 8, 6, 13, 12, 9, 12, 0, 9, 14, 12, 7, 15, 12, 6, 15, 1, 6, 21, 12, 12, 13, 6, 11, 0, 6, 9, 14, 12, 8, 24, 10, 9, 19, 0, 10, 12, 12, 9, 18, 18, 1, 15
Offset: 0
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 0..269535
Crossrefs
Programs
-
Mathematica
Table[Sum[JacobiSymbol[i, 4n + 3], {i, 0, 2n + 1}], {n, 0, 100}] (* Indranil Ghosh, May 13 2017 *)
-
PARI
a(n) = sum(i=0, 2*n + 1, kronecker(i, 4*n + 3)); \\ Indranil Ghosh, May 13 2017
-
Python
from sympy import jacobi_symbol as J def a(n): return sum([J(i, 4*n + 3) for i in range(2*n + 2)]) # Indranil Ghosh, May 13 2017