A166063 23-rough numbers: positive integers that have no prime factors less than 23.
1, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
Offset: 1
Examples
667 = 23 * 29 is in the sequence since the two prime factors, 23 and 29, are not less than 23.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1200
- Eric Weisstein's World of Mathematics, Rough Number
- Index entries for sequences related to smooth numbers
Crossrefs
Programs
-
Maple
A166063 := proc(n) option remember; local a; if n =1 then 1; else for a from procname(n-1)+1 do numtheory[factorset](a) ; if min(op(%)) >= 23 then return a; end if; end do: end if; end proc: seq(A166063(n),n=1..80) ; # R. J. Mathar, Nov 05 2024
-
Mathematica
Select[Range[500],FactorInteger[#][[1,1]]>22&] (* Harvey P. Dale, Nov 22 2010 *)
-
PARI
isA166063(n) = gcd(n,9699690)==1 \\ Michael B. Porter, Oct 10 2009
Formula
a(n) = k*n + O(1) where k = 323323/55296 = 5.8471.... In particular, k*n - 51 < a(n) < k*n + 45. - Charles R Greathouse IV, Sep 21 2018
Extensions
Additional terms provided provided by Harvey P. Dale, Nov 22 2010
Comments