cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166106 a(n) = a(n-1) + a(n-2) + F(n), with a(0) = 0, a(1) = 1, a(2) = a(1) + a(0), a(3) = a(2) + a(1), a(4) = a(3) + a(2) + 2.

Original entry on oeis.org

0, 1, 1, 2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, 1908, 3360, 5878, 10225, 17700, 30509, 52390, 89664, 153000, 260375, 442032, 748775, 1265832, 2136000, 3598250, 6052061, 10164540, 17048641, 28559450, 47786400, 79870428, 133359715, 222457608, 370747675
Offset: 0

Views

Author

Gerald McGarvey, Oct 06 2009

Keywords

Comments

Consider the recursive call tree for Fibonacci numbers shown in the Wilson, Abelson et al., and Bloch links. This type of tree is a variant of Fibonacci trees shown/defined elsewhere. Here, let us refer it as a recursive Fibonacci tree. A Fibonacci number F(n) is the weight of the root of a weighted recursive Fibonacci tree of order n in which the leafs have a weight of 1, and the weight of a node equals the sum of the weights of its two children. If instead we weight each leaf by the number of nodes above it (considering the root as the topmost node), then for n > 2, a(n) is the weight of the root of such a weighted tree of order n. For example, a(5) = 2+2+2+3+3.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    a[n_] := a[n] = a[n-1] + a[n-2] + Fibonacci[n]; a[0] = 0; a[1] = 1; a[2] = 1; a[3] = 2; a[4] = 5; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Oct 03 2011 *)
  • PARI
    s = 33; a = concat([0,1,1,2,5],vector(s-5)); for(n=6,s,a[n]=a[n-1]+a[n-2]+fibonacci(n)); for(n=1,s,print1(a[n],", "))
    
  • PARI
    concat(0, Vec(x*(x^5+3*x^4+2*x^3-x^2-x+1)/(x^2+x-1)^2 + O(x^100))) \\ Colin Barker, May 25 2014

Formula

For n > 1, a(n) = A067331(n-2).
From Colin Barker, May 25 2014: (Start)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n > 6.
G.f.: x*(x^5 + 3*x^4 + 2*x^3 - x^2 - x + 1) / (x^2+x-1)^2. (End)
a(n) = (1/25)*2^(-n-1)*(5*((1 - sqrt(5))^(n+1) + (1 + sqrt(5))^(n+1))*n - (25 + sqrt(5))*(1 + sqrt(5))^n + (sqrt(5) - 25)*(1 - sqrt(5))^n), n > 2. - Ilya Gutkovskiy, Apr 26 2016

Extensions

More terms from Colin Barker, May 25 2014