cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166122 a(n) = (7-(-5)^n)/6.

Original entry on oeis.org

1, 2, -3, 22, -103, 522, -2603, 13022, -65103, 325522, -1627603, 8138022, -40690103, 203450522, -1017252603, 5086263022, -25431315103, 127156575522, -635782877603, 3178914388022, -15894571940103, 79472859700522
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4,5},{1,2},30] (* Harvey P. Dale, Mar 10 2016 *)
    Table[(7 - (-5)^n)/6, {n, 24}] (* or *)
    CoefficientList[Series[(1 + 6 x)/(1 + 4 x - 5 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Apr 27 2016 *)

Formula

a(n) = 5*a(n-2) - 4*a(n-1), a(0)= 1, a(1)= 2, for n>1.
a(n) = 7-5*a(n-1), a(0)=1.
a(n) = a(n-1)+(-5)^(n-1), a(0)=1.
O.g.f.: (1+6*x)/(1+4*x-5*x^2).
E.g.f.: (7*exp(x)-exp(-5*x))/6.

A166124 Triangle, read by rows, given by [0,1/2,1/2,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Examples

			Triangle begins :
1 ;
0,2 ;
0,1,2 ;
0,1,1,2 ;
0,1,1,1,2 ;
0,1,1,1,1,2 ;
0,1,1,1,1,1,2 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^(n-k)= A166122(n), A166114(n), A084222(n), A084247(n), A000034(n), A040000(n), A000027(n+1), A000079(n), A007051(n), A047849(n), A047850(n), A047851(n), A047852(n), A047853(n), A047854(n), A047855(n), A047856(n) for x= -5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^k= A000007(n), A000027(n+1), A033484(n), A134931(n), A083597(n) for x= 0,1,2,3,4 respectively.
T(n,k)= A166065(n,k)/2^(n-k).
G.f.: (1-x+x*y)/(1-x-x*y+x^2*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
Showing 1-2 of 2 results.