A166131 a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
1, 4, 9, 15, 20, 46, 39, 43, 52, 76, 64, 83, 118, 92, 166, 154, 128, 146, 173, 236, 228, 190, 283, 215, 434, 240, 246, 395, 607, 377, 357, 536, 349, 492, 519, 444, 722, 430, 635, 814, 598, 512, 541, 562, 700, 821, 633, 708, 893, 729, 738
Offset: 1
Keywords
Examples
The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j)) . j a(j) prime(a(j)) (SQN-SQR)/prime(a(j)) -- ---- ----------- --------------------- 1 1 2 0 2 4 7 1 3 9 23 3 4 15 47 5 5 20 71 7 6 46 199 9 7 39 167 11 8 43 191 13 9 52 239 15 10 76 383 17 11 64 311 19 12 83 431 21 13 118 647 23 14 92 479 25 15 166 983 27 16 154 887 29 17 128 719 31 18 146 839 33 19 173 1031 35 20 236 1487 37 21 228 1439 39 22 190 1151 41 23 283 1847 43 24 215 1319 45 25 434 3023 47 26 240 1511 49 27 246 1559 51 28 395 2711 53 29 607 4463 55 30 377 2591 57 31 357 2399 59 32 536 3863 61 33 349 2351 63 34 492 3527 65 35 519 3719 67 36 444 3119 69 37 722 5471 71 38 430 2999 73 39 635 4703 75 40 814 6263 77 41 598 4391 79 42 512 3671 81 43 541 3911 83 44 562 4079 85 45 700 5279 87 46 821 6311 89 47 633 4679 91 48 708 5351 93 49 893 6959 95 50 729 5519 97 51 738 5591 99
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..1973.
Extensions
Sequence corrected and comments added by Christopher Hunt Gribble, Oct 10 2009