A166246 Primes representable as the sum of two rational cubes.
2, 7, 13, 17, 19, 31, 37, 43, 53, 61, 67, 71, 79, 89, 97, 103, 107, 127, 139, 151, 157, 163, 179, 193, 197, 211, 223, 229, 233, 241, 251, 269, 271, 277, 283, 313, 331, 337, 349, 359, 367, 373, 379, 397, 409, 421, 431, 433, 439, 449, 457, 463, 467, 499, 503, 521
Offset: 1
Keywords
References
- H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.
Links
- Fernando Rodriguez Villegas, Don Zagier, Which primes are sums of two cubes?, CMS Conference Proceedings 15 (1995), pp. 295-306.
Programs
-
Mathematica
(* To speed up computation, a few terms are pre-computed *) nmax = 521; xmax = 360; preComputed = {127, 271, 379}; solQ[p_] := Do[ If[ IntegerQ[z = Root[-x^3 - y^3 + p*#^3 & , 1]], Print[p, {x, y, z}]; Return[True]], {x, 2, xmax}, {y, x, xmax}]; A166246 = Union[ preComputed, Select[ Prime[ Range[ PrimePi[nmax]]], Mod[#, 9] == 4 || Mod[#, 9] == 7 || Mod[#, 9] == 8 || solQ[#] === True & ]](* Jean-François Alcover, Apr 04 2012, after given formula *)
Comments