cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166248 a(n) is the absolute value of n minus sum of all the remainders modulo the numbers below n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 0, 3, 3, 11, 5, 15, 17, 21, 20, 34, 29, 45, 41, 49, 55, 75, 61, 78, 86, 98, 96, 122, 108, 136, 135, 151, 163, 183, 162, 196, 210, 230, 218, 256, 242, 282, 284, 294, 312, 356, 326, 365, 370, 398, 402, 452, 438, 474, 464, 496, 520, 576, 526, 584, 610
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 10 2009

Keywords

Examples

			a(1) = abs(1-0) = 1;
a(2) = abs(2-0) = 2;
a(3) = abs(3-1) = 2;
a(4) = abs(4-1) = 3;
a(5) = abs(5-4) = 1;
a(6) = abs(6-3) = 3;
a(7) = abs(7-8) = 1.
		

Crossrefs

Programs

  • Maple
    A004125 := proc(n) add( modp(n,k),k=1..n) ; end proc: A166248 := proc(n) abs(n-A004125(n)) ; end: seq(A166248(n),n=1..100) ; # R. J. Mathar, Oct 24 2009
  • Python
    from math import isqrt
    def A166248(n): return abs(n*(n-1)+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)) # Chai Wah Wu, Nov 01 2023

Formula

a(n) = abs(n - Sum_{k=1..n} (n mod k)).
a(n) = abs(n - A004125(n)). - Michel Marcus, May 08 2019

Extensions

a(19), a(20), a(37) etc. corrected by R. J. Mathar, Oct 24 2009