A161924 Permutation of natural numbers: sequence A126441 without zeros.
1, 2, 3, 4, 5, 7, 8, 9, 6, 11, 15, 16, 17, 10, 19, 13, 23, 31, 32, 33, 18, 35, 12, 21, 14, 39, 27, 47, 63, 64, 65, 34, 67, 20, 37, 22, 71, 25, 43, 29, 79, 55, 95, 127, 128, 129, 66, 131, 36, 69, 38, 135, 24, 41, 26, 75, 45, 30, 143, 51, 87, 59, 159, 111, 191, 255, 256
Offset: 1
Examples
The table begins: 1.2.4..8.16.32.64.128.256.512.1024 ..3.5..9.17.33.65.129.257.513.1025 .......6.10.18.34..66.130.258..514 ....7.11.19.35.67.131.259.515.1027 ............12.20..36..68.132..260 .........13.21.37..69.133.261..517 ............14.22..38..70.134..262 ......15.23.39.71.135.263.519.1031 ...................24..40..72..136 ...............25..41..73.137..265 ...................26..42..74..138 ............27.43..75.139.267..523 .......................28..44...76 ...............29..45..77.141..269 ...................30..46..78..142 .........31.47.79.143.271.527.1039 ...........................48...80 .......................49..81..145 ...........................50...82 ...................51..83.147..275 This can be viewed as an irregular table, where row r (>= 1) has A000041(r) elements, that is, as 1; 2,3; 4,5,7; 8,9,6,11,15; 16,17,10,19,13,23,31; etc. A125106 illustrates how each number is mapped to a partition.
Links
Crossrefs
Programs
-
Mathematica
columns = 9; row[n_] := n - 2^Floor[Log2[n]]; col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n - 1)/2] + 1]; Clear[T]; T[, ] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}]; Table[DeleteCases[Table[T[n - 1, k], {n, 1, 2^(k - 1)}], 0], {k, 1, columns}] // Flatten (* Jean-François Alcover, Sep 09 2017 *)
Extensions
Edited and extended by Antti Karttunen, Oct 12 2009
Comments