A166278 Square array A(n,k), n,k>=0, read by antidiagonals: A(n,k) is the total element sum of the k-fold f transform applied to the length n sequence of 1's. And f returns a sorted result after multiplying the elements in its input sequence with 1, 2, 3,... in descending size order.
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 6, 10, 10, 5, 0, 1, 8, 19, 20, 15, 6, 0, 1, 12, 33, 46, 35, 21, 7, 0, 1, 16, 63, 100, 94, 56, 28, 8, 0, 1, 24, 111, 220, 242, 172, 84, 36, 9, 0, 1, 32, 201, 488, 633, 514, 290, 120, 45, 10, 0, 1, 48, 369, 1104, 1643, 1518, 984, 460, 165, 55, 11
Offset: 0
Examples
A(3,4) = 33, because f([1,1,1]) = [1,2,3], (f^2)([1,1,1]) = [3,3,4], (f^3)([1,1,1]) = [4,6,9], (f^4)([1,1,1]) = [9,12,12], and 9+12+12 = 33. Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, ... 2, 3, 4, 6, 8, 12, ... 3, 6, 10, 19, 33, 63, ... 4, 10, 20, 46, 100, 220, ... 5, 15, 35, 94, 242, 633, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
f:= l-> sort([seq(sort(l, `>`)[i]*i, i=1..nops(l))]): A:= (n, k)-> add(i, i=(f@@k)([1$n])): seq(seq(A(n, d-n), n=0..d), d=0..15);
-
Mathematica
f[L_List] := f[L] = Sort[Reverse[Sort[L]]*Range[Length[L]]]; A[0, ] = 0; A[n, 0] := n; A[n_, k_] := Total[Nest[f, Range[n], k-1]]; Table[A[n, k-n], {k, 0, 15}, {n, 0, k}] // Flatten (* Jean-François Alcover, Jun 07 2016 *)