A166282 Matrix inverse of Sierpinski's triangle (A047999, Pascal's triangle mod 2).
1, -1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1, -1, 1, -1, 0, 1, 1,-1,-1, 1, -1, 0, 0, 0, 1, 1,-1, 0, 0,-1, 1, 1, 0,-1, 0,-1, 0, 1, -1, 1, 1,-1, 1,-1,-1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1,-1, 0, 0, 0, 0, 0, 0,-1, 1, 1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1, -1, 1, 1,-1, 0, 0, 0, 0, 1,-1,-1, 1, 1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1, ...
Programs
-
PARI
p=2; s=13; P=matpascal(s); PM=matrix(s+1,s+1,n,k,P[n,k]%p); IPM = 1/PM; for(n=1,s,for(k=1,n,print1(IPM[n,k],","));print())
Comments