cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166282 Matrix inverse of Sierpinski's triangle (A047999, Pascal's triangle mod 2).

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 0, 0, 0, 1, 1, -1, 0, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 0, 0, 0, 1, -1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1
Offset: 0

Views

Author

Gerald McGarvey, Oct 10 2009

Keywords

Comments

In absolute values equal to A047999. - M. F. Hasler, Jun 06 2016

Examples

			Triangle begins:
    1,
   -1, 1,
   -1, 0, 1,
    1,-1,-1, 1,
   -1, 0, 0, 0, 1,
    1,-1, 0, 0,-1, 1,
    1, 0,-1, 0,-1, 0, 1,
   -1, 1, 1,-1, 1,-1,-1, 1,
   -1, 0, 0, 0, 0, 0, 0, 0, 1,
    1,-1, 0, 0, 0, 0, 0, 0,-1, 1,
    1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,
   -1, 1, 1,-1, 0, 0, 0, 0, 1,-1,-1, 1,
    1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1,
   ...
		

Crossrefs

Programs

  • PARI
    p=2; s=13; P=matpascal(s); PM=matrix(s+1,s+1,n,k,P[n,k]%p); IPM = 1/PM;
    for(n=1,s,for(k=1,n,print1(IPM[n,k],","));print())