cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243886 Primes p = prime(n): such that p.n and n.p both are prime, where (.) indicates concatenation.

Original entry on oeis.org

661, 1051, 1999, 2179, 3433, 3593, 3719, 4073, 4591, 4733, 5449, 5503, 6079, 6481, 7109, 7211, 7489, 8293, 8513, 9901, 10273, 10529, 11821, 12721, 14107, 14591, 14879, 15263, 15877, 18149, 19559, 22027, 22129, 22571, 23339, 24527, 25357, 26881, 27337, 34259
Offset: 1

Views

Author

K. D. Bajpai, Jun 13 2014

Keywords

Comments

Intersection of A084671 and A166283.

Examples

			661 is in the sequence because 661 = prime(121): Concatenations of [661.121 = 661121] and concatenation of [121.661 = 121661] which are also primes.
1051 is in the sequence because 1051 = prime(177): Concatenation of [1051.177 = 1051177] and concatenation of [177.1051 = 1771051] which are also primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(StringTools): A243886:= proc() local p,k1,k2; p:=ithprime(n); k1:=parse (cat (p,n)); k2:=parse(cat(n,p)); if isprime(k1)and isprime(k2) then RETURN (p); fi; end: seq(A243886 (), n=1..5000);
  • Mathematica
    Select[Prime [Range[5000]], PrimeQ[FromDigits[Join[IntegerDigits [PrimePi [#]], IntegerDigits [#]]]] && PrimeQ [FromDigits [Join [IntegerDigits[#], IntegerDigits [PrimePi [#]]]]] &]
Showing 1-1 of 1 results.