cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166287 Number of peak plateaux in all Dyck paths of semilength n with no UUU's and no DDD's (U=(1,1), D=(1,-1)).

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 21, 53, 133, 334, 839, 2112, 5329, 13475, 34143, 86674, 220400, 561309, 1431522, 3655480, 9345287, 23916622, 61267207, 157088278, 403103955, 1035192885, 2660312103, 6841157380, 17603254230, 45321606641, 116748360064
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Comments

A peak plateau is a run of consecutive peaks that is preceded by an upstep U and followed by a down step D; a peak consists of an upstep followed by a downstep.

Examples

			a(4)=3 because we have UDUDUDUD, UDUDUUDD, UDUUDDUD, UD(UUDUDD), UUDDUDUD, UUDDUUDD, (UUDUDD)UD, (UUDUDUDD) (the 3 peak plateaux are shown between parentheses).
		

Crossrefs

Cf. A166285.

Programs

  • Maple
    h := sqrt((1-3*z+z^2)*(1+z+z^2)): G := ((1-z-z^2-h)*1/2)/((1-z)*h): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[((1-x-x^2-Sqrt[(1-3*x+x^2)*(1+x+x^2)])*1/2)/((1-x)*Sqrt[(1-3*x+x^2)*(1+x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(((1-x-x^2-sqrt((1-3*x+x^2)*(1+x+x^2))))/(2*(1-x)*sqrt((1-3*x+x^2)*(1+x+x^2))))) \\ G. C. Greubel, Mar 22 2017

Formula

a(n) = Sum_{k>=0} k*A166285(n,k).
G.f.: G=(1-z-z^2-h)/[2(1-z)h], where h = sqrt((1-3z+z^2)(1+z+z^2)).
a(n) ~ (3+sqrt(5))^n / (5^(1/4) * sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*a(n) +(-4*n+3)*a(n-1) +3*(n-1)*a(n-2) +(n-9)*a(n-3) +(3*n-5)*a(n-4) +(-3*n+7)*a(n-5) +(-2*n+13)*a(n-6) +(n-6)*a(n-7)=0. - R. J. Mathar, Jun 14 2016
Conjecture: n*(2*n-5)*(2*n-7)*a(n) -(2*n-7)*(6*n^2-17*n+8)*a(n-1) +(n-2)*(4*n^2-16*n-1)*a(n-2) +(-4*n^3+32*n^2-71*n+44)*a(n-3) +(2*n-3) (6*n^2-37*n+54)*a(n-4) -(n-4)*(2*n-3)*(2*n-5)*a(n-5)=0. - R. J. Mathar, Jun 14 2016