cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166288 Triangle read by rows: T(n,k) is the number of Dyck paths with no UUU's and no DDD's, of semilength n and having k UDUD's (0<=k <= n-1; U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 4, 5, 6, 1, 1, 6, 12, 9, 8, 1, 1, 9, 23, 24, 14, 10, 1, 1, 17, 38, 56, 40, 20, 12, 1, 1, 26, 84, 100, 110, 60, 27, 14, 1, 1, 46, 145, 250, 210, 190, 84, 35, 16, 1, 1, 81, 280, 480, 580, 385, 301, 112, 44, 18, 1, 1, 135, 551, 995, 1225, 1155, 644, 448, 144, 54, 20, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Comments

Sum of entries in row n = A004148(n+1) (the secondary structure numbers).
T(n,0) = A166289(n).
Sum(k*T(n,k), k=0..n-1) = A166290(n).

Examples

			T(5,2) = 6 because we have (UDUDUD)UUDD, UDU(UDUDUD)D, UUDD(UDUDUD), U(UDUD)D(UDUD), U(UDUDUD)DUD, and (UDUD)U(UDUD)D (the UDUD's are shown between parentheses).
Triangle starts:
  1;
  1,  1;
  2,  1,  1;
  2,  4,  1,  1;
  4,  5,  6,  1,  1;
  6, 12,  9,  8,  1, 1;
  9, 23, 24, 14, 10, 1, 1;
  ...
		

Crossrefs

T(2n,n) gives A333156.

Programs

  • Maple
    F := RootOf(z^3*G^2-(1+z-t*z)*(1-t*z-z^2)*G+(1+z-t*z)^2, G): Fser := series(F, z = 0, 15): for n to 12 do P[n] := sort(coeff(Fser, z, n)) end do: for n to 12 do seq(coeff(P[n], t, j), j = 0 .. n-1) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x or t=8, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 7, 4, 7, 2, 2, 8][t])
          +`if`(t=4, z, 1)  *b(x-1, y-1, [5, 3, 6, 3, 6, 8, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jun 04 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x || t == 8, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 7, 4, 7, 2, 2, 8}[[t]] ] + If[t == 4, z, 1]*b[x-1, y-1, {5, 3, 6, 3, 6, 8, 3}[[t]] ]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

G.f.: G(t,z) -1, where G=G(t,z) satisfies z^3*G^2 - (1+z-tz)(1-tz-z^2)G+(1+z-tz)^2=0.