cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166290 Number of UDUD's in all Dyck paths of semilength n with no UUU's and no DDD's (U=(1,1), D=(1,-1)).

Original entry on oeis.org

0, 0, 1, 3, 9, 24, 63, 164, 423, 1088, 2794, 7168, 18385, 47158, 120991, 310537, 797381, 2048456, 5265059, 13539331, 34834238, 89665630, 230913976, 594938458, 1533501169, 3954384384, 10201142803, 26326101399, 67964928779, 175524139820
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Examples

			a(3)=3 because UDUDUD, UDUUDD, UUDDUD, and UUDUDD have 2+0+0+1=3 UDUD's.
		

Crossrefs

Cf. A166288.

Programs

  • Maple
    g := (1/2)*(z-1)*(z+2)/z^2+((2-3*z-2*z^2-2*z^3+z^4)*1/2)/(z^2*sqrt((1+z+z^2)*(1-3*z+z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 30);
  • Mathematica
    CoefficientList[Series[(1/2)*(x-1)*(x+2)/x^2+((2-3*x-2*x^2-2*x^3+x^4)*1/2) /(x^2*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec((1/2)*(x-1)*(x+2)/x^2+((2-3*x-2*x^2-2*x^3+x^4)) /(2*x^2*sqrt((1+x+x^2)*(1-3*x+x^2))))) \\ G. C. Greubel, Mar 22 2017

Formula

a(n) = Sum_{k>=0} k*A166288(n,k).
G.f. = (z-1)*(z+2)/(2*z^2) + (2-3*z-2*z^2-2*z^3+z^4) / [2*z^2*sqrt((1+z+z^2)*(1-3z+z^2))].
a(n) ~ sqrt(4 + 9/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Mar 20 2014. Equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
Conjecture: -(n+2)*(60283*n-319055)*a(n) +(-60283*n^2-13090*n+236862)*a(n-1) +(588710*n^2-2858167*n+437486)*a(n-2) +(-32043*n^2+2024290*n-2826488)*a(n-3) +(134686*n^2+585099*n-3417942)*a(n-4) +(-514307*n^2+4366464*n-8945002)*a(n-5) +(166729*n-863288)*(n-6)*a(n-6)=0. - R. J. Mathar, Jun 14 2016