cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166296 Number of Dyck paths of semilength n with no UUU's and no DDD's and having no UUDUDD's starting at level 0 (U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 26, 57, 128, 291, 670, 1558, 3655, 8639, 20554, 49185, 118301, 285840, 693480, 1688683, 4125882, 10111393, 24849532, 61226546, 151212789, 374271925, 928254590, 2306569185, 5741561804, 14315544330, 35748249574
Offset: 0

Views

Author

Emeric Deutsch, Oct 29 2009

Keywords

Examples

			a(3)=3 because we have UDUDUD, UDUUDD, and UUDDUD.
		

Crossrefs

Cf. A166295.

Programs

  • Maple
    G := 2/(1-z-z^2+2*z^3+sqrt(1-2*z-z^2-2*z^3+z^4)): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[2/(1-x-x^2+2*x^3+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); Vec(2/(1-x-x^2+2*x^3+sqrt(1-2*x-x^2-2*x^3+x^4))) \\ G. C. Greubel, Mar 22 2017

Formula

a(n) = A166295(n,0).
G.f.: G=2/[1-z-z^2+2*z^3+sqrt(1-2z-z^2-2z^3+z^4)].
a(n) ~ sqrt(360 + 161*sqrt(5)) * ((3+sqrt(5))/2)^n / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ 5^(1/4) * phi^(2*n + 6) / (8*sqrt(Pi)*n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
D-finite with recurrence 2*(n+3)*a(n) +(-5*n-9)*a(n-1) -n*a(n-2) +12*(1)*a(n-3) +3*(n-4)*a(n-4) +3*(-n+2)*a(n-6) +(n-3)*a(n-7)=0. - R. J. Mathar, Jul 24 2022