cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166297 Number of UUDUDD's starting at level 0 in all Dyck paths of semilength n with no UUU's and no DDD's (U=(1,1), D=(1,-1)).

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 12, 28, 66, 156, 370, 882, 2112, 5079, 12264, 29725, 72298, 176414, 431754, 1059595, 2607090, 6429913, 15893330, 39365876, 97692372, 242875105, 604836072, 1508619585, 3768496102, 9426815859, 23612178180, 59217406914
Offset: 0

Views

Author

Emeric Deutsch, Oct 29 2009

Keywords

Comments

a(n) = Sum_{k=0..floor(n/3)} k*A166295(n,k).

Examples

			a(3)=1 because in UDUDUD, UDUUDD, UUDDUD, and UUDUDD we have 0+0+0+1=1 UUDUDD's starting at level 0.
		

Crossrefs

Cf. A166295.
Cf. A004148. - Emeric Deutsch, Nov 10 2009

Programs

  • Maple
    G := 4*z^3/(1-z-z^2+sqrt(1-2*z-z^2-2*z^3+z^4))^2: Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[4*x^3/(1-x-x^2+Sqrt[1-2*x-x^2-2*x^3+x^4])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • Maxima
    a(n):=2*sum((binomial(n-1-k,k)*binomial(n-1-k,k+2))/(n-1-k),k,0,(n-2)/2); /* Vladimir Kruchinin, Oct 13 2020 */

Formula

G.f.: G(z) = 4*z^3/(1-z-z^2+sqrt(1-2*z-z^2-2*z^3+z^4))^2.
a(n) = A004148(n+1) - A004148(n) - A004148(n-1) for n>=3. - Emeric Deutsch, Nov 10 2009
a(n) ~ sqrt(5 + 3*sqrt(5)) * ((3+sqrt(5))/2)^n / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = 2*Sum_{k=0..(n-2)/2} C(n-k-1,k)*C(n-k-1,k+2)/(n-k-1). - Vladimir Kruchinin, Oct 13 2020
D-finite with recurrence +(n+3)*a(n) +(-3*n-4)*a(n-1) +(n-4)*a(n-3) +2*(2*n-7)*a(n-4) +(n-6)*a(n-5) +(-n+7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022