cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A166302 Sum of pyramid weights of all Dyck paths of semilength n that have no ascents and no descents of length 1.

Original entry on oeis.org

0, 0, 2, 3, 8, 19, 44, 106, 257, 628, 1549, 3844, 9588, 24020, 60391, 152298, 385085, 975904, 2478129, 6303861, 16060946, 40977605, 104682165, 267730426, 685451776, 1756593392, 4505537267, 11565724164, 29711413595, 76379060176, 196473781247
Offset: 0

Views

Author

Emeric Deutsch, Nov 07 2009

Keywords

Comments

A pyramid in a Dyck word (path) is a factor of the form U^h D^h, h being the height of the pyramid. A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The pyramid weight of a Dyck path (word) is the sum of the heights of its maximal pyramids.

Examples

			a(5)=19 because the pyramid weights of (UUDD)(UUUDDD), (UUUDDD)(UUDD), U(UUDD)(UUDD)D, and (UUUUUDDDDD) are 5, 5, 4, and 5, respectively (the maximal pyramids are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G := (1/2)*z*(2-z)*(1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2)))/((1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[1/2*x*(2-x)*(1+x-x^2-Sqrt[(1+x+x^2)*(1-3*x+x^2)]) /((1-x)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    z='z+O('z^50); concat([0,0], Vec(z*(2-z)*(1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2)))/(2*(1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))))) \\ G. C. Greubel, Mar 22 2017

Formula

a(n) = Sum_{k=0..n} k*A166301(n,k).
G.f.: z*(2-z)*[1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2))]/[2*(1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))].
a(n) ~ (3+sqrt(5))^(n+1/2) / (5^(1/4) * sqrt(Pi*n) * 2^(n+3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 2*(n-1)*(2494*n-8185)*a(n) +23*(-770*n^2+3867*n-3959)*a(n-1) +(13226*n^2-83741*n+101091)*a(n-2) +(-7734*n^2+51213*n-51521)*a(n-3) +(17710*n^2-114385*n+144471)*a(n-4) +(-13226*n^2+104701*n-162397)*a(n-5) +(2746*n-6149)*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
Showing 1-1 of 1 results.