A166302 Sum of pyramid weights of all Dyck paths of semilength n that have no ascents and no descents of length 1.
0, 0, 2, 3, 8, 19, 44, 106, 257, 628, 1549, 3844, 9588, 24020, 60391, 152298, 385085, 975904, 2478129, 6303861, 16060946, 40977605, 104682165, 267730426, 685451776, 1756593392, 4505537267, 11565724164, 29711413595, 76379060176, 196473781247
Offset: 0
Keywords
Examples
a(5)=19 because the pyramid weights of (UUDD)(UUUDDD), (UUUDDD)(UUDD), U(UUDD)(UUDD)D, and (UUUUUDDDDD) are 5, 5, 4, and 5, respectively (the maximal pyramids are shown between parentheses).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Programs
-
Maple
G := (1/2)*z*(2-z)*(1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2)))/((1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
-
Mathematica
CoefficientList[Series[1/2*x*(2-x)*(1+x-x^2-Sqrt[(1+x+x^2)*(1-3*x+x^2)]) /((1-x)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); concat([0,0], Vec(z*(2-z)*(1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2)))/(2*(1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))))) \\ G. C. Greubel, Mar 22 2017
Formula
a(n) = Sum_{k=0..n} k*A166301(n,k).
G.f.: z*(2-z)*[1+z-z^2-sqrt((1+z+z^2)*(1-3*z+z^2))]/[2*(1-z)*sqrt((1+z+z^2)*(1-3*z+z^2))].
a(n) ~ (3+sqrt(5))^(n+1/2) / (5^(1/4) * sqrt(Pi*n) * 2^(n+3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 2*(n-1)*(2494*n-8185)*a(n) +23*(-770*n^2+3867*n-3959)*a(n-1) +(13226*n^2-83741*n+101091)*a(n-2) +(-7734*n^2+51213*n-51521)*a(n-3) +(17710*n^2-114385*n+144471)*a(n-4) +(-13226*n^2+104701*n-162397)*a(n-5) +(2746*n-6149)*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022
Comments