cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A166317 Exponential Riordan array [sec(2x), arctanh(tan(x))].

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 0, 16, 0, 1, 80, 0, 40, 0, 1, 0, 640, 0, 80, 0, 1, 3904, 0, 2800, 0, 140, 0, 1, 0, 49152, 0, 8960, 0, 224, 0, 1, 354560, 0, 319744, 0, 23520, 0, 336, 0, 1, 0, 6225920, 0, 1454080, 0, 53760, 0, 480, 0, 1, 51733504, 0, 54897920, 0, 5230720, 0, 110880, 0, 660, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 11 2009

Keywords

Comments

The Bell transform of abs(2^n*euler_number(n)). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
  1;
  0, 1;
  4, 0, 1;
  0, 16, 0, 1;
  80, 0, 40, 0, 1;
  0, 640, 0, 80, 0, 1;
  3904, 0, 2800, 0, 140, 0, 1;
  0, 49152, 0, 8960, 0, 224, 0, 1;
  354560, 0, 319744, 0, 23520, 0, 336, 0, 1;
  0, 6225920, 0, 1454080, 0, 53760, 0, 480, 0, 1;
  51733504, 0, 54897920, 0, 5230720, 0, 110880, 0, 660, 0, 1;
Production matrix is
    0,    1;
    4,    0,    1;
    0,   12,    0,    1;
   16,    0,   24,    0,    1;
    0,   80,    0,   40,    0,    1;
   64,    0,  240,    0,   60,    0,   1;
    0,  448,    0,  560,    0,   84,   0,   1;
  256,    0, 1792,    0, 1120,    0, 112,   0, 1;
    0, 2304,    0, 5376,    0, 2016,   0, 144, 0, 1;
which is the exponential Riordan array [cosh(2x),x] minus its top row. (Cf. also A117435.)
		

Crossrefs

Row sums are A012259(n+1).
Inverse is A166318 which is a signed version of this sequence.

Programs

  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    rows = 12;
    M = BellMatrix[Abs[2^#*EulerE[#]]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jul 11 2019 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: abs(2^n*euler_number(n)), 10) # Peter Luschny, Jan 18 2016
Showing 1-1 of 1 results.