A166360 Triangle of Narayana numbers mod 2, T(n,k) = A001263(n,k) mod 2, read by rows.
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ...
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a166360 n k = a166360_tabl !! (n-1) !! (k-1) a166360_row n = a166360_tabl !! (n-1) a166360_tabl = map (map (flip mod 2)) a001263_tabl -- Reinhard Zumkeller, Oct 10 2013
-
Mathematica
T[n_, k_] := Mod[Binomial[n-1, k-1] * Binomial[n, k-1] / k, 2]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Amiram Eldar, May 13 2025 *)
-
PARI
p = 2; s=14; NT = matrix(s,s,n,k, binomial(n-1, k-1)*binomial(n, k-1)/k); NTMP = matrix(s,s,n,k, NT[n,k]%p); for(n=1,s,for(k=1,n,print1(NTMP[n,k]," "));print())