cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038692 Square numbers that are concatenations of two or more prime numbers.

Original entry on oeis.org

25, 225, 289, 361, 529, 729, 2401, 2601, 2809, 4761, 5329, 5929, 7225, 7569, 11449, 11881, 13225, 15129, 19881, 21609, 22801, 23409, 24649, 25281, 26569, 27225, 29241, 29929, 31329, 32761, 34969, 36481, 39601, 47961, 52441, 53361, 54289, 55225, 57121, 58081
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A166503 (the square roots).

Programs

  • Mathematica
    ric[d_] := PrimeQ@ FromDigits@ d || AnyTrue[ TakeDrop[d, #] & /@ Range[ Length[d] - 1], #[[2,1]] > 0 && PrimeQ@ FromDigits@ #[[1]] && ric@ #[[2]] &]; ok[n_] := If[ EvenQ[n] && Mod[n, 10] != 2, False, ric@ IntegerDigits@ n]; Select[ Range[300]^2, ok] (* Giovanni Resta, Mar 16 2020 *)
  • PARI
    forstep(n=1, 300, 2, is_A152242(n^2) & print1(n^2, ", ")) \\ M. F. Hasler, Mar 19 2012

Formula

A038692(n) = A166503(n)^2. As a set, A038692 = A000290 intersection A152242 = A016754 intersection A152242. - M. F. Hasler, Mar 19 2012

Extensions

Edited by N. J. A. Sloane, Oct 18 2009, incorporating corrections from M. F. Hasler and Zak Seidov.

A165631 Numbers whose cube is a concatenation of primes, i.e., in A152242.

Original entry on oeis.org

3, 7, 9, 11, 13, 15, 17, 18, 27, 28, 29, 31, 33, 38, 39, 45, 47, 48, 49, 53, 55, 58, 59, 61, 63, 68, 71, 73, 75, 83, 85, 88, 91, 95, 98, 103, 108, 111, 113, 117, 121, 125, 127, 131, 133, 135, 137, 138, 148, 153, 157, 159, 161, 163, 167, 168, 173, 175, 177, 178, 179
Offset: 1

Views

Author

Zak Seidov and M. F. Hasler, Oct 16 2009

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,999, is_A152242(n^3) & print1(n", "))

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Showing 1-2 of 2 results.