A166514 Zig-zag function for first two columns of a matrix (take numbers in consecutive pairs).
0, 1, 1, 0, 2, 1, 3, 0, 4, 1, 5, 0, 6, 1, 7, 0, 8, 1, 9, 0, 10, 1, 11, 0, 12, 1, 13, 0, 14, 1, 15, 0, 16, 1, 17, 0, 18, 1, 19, 0, 20, 1, 21, 0, 22, 1, 23, 0, 24, 1, 25, 0, 26, 1, 27, 0, 28, 1, 29, 0, 30, 1, 31, 0, 32, 1, 33, 0, 34, 1, 35, 0, 36, 1, 37, 0, 38, 1, 39, 0, 40, 1, 41, 0, 42, 1, 43, 0
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
Programs
-
Magma
A166514:= func< n | ((n mod 2)*(1-(-1)^Floor((n+1)/2)) +((n+1) mod 2)*n)/2 >; [A166514(n): n in [0..100]]; // G. C. Greubel, Aug 03 2024
-
Mathematica
CoefficientList[Series[(x + x^2 - x^3 + x^4)/((1 + x)^2*(1 - x)^2*(1 + x^2)), {x, 0, 50}], x] (* G. C. Greubel, May 15 2016 *)
-
SageMath
def A166514(n): return ((n%2)*(1+(-1)^((n-1)//2)) +((n+1)%2)*n)/2 [A166514(n) for n in range(101)] # G. C. Greubel, Aug 03 2024
Formula
G.f.: x*(1+x-x^2+x^3)/((1+x)^2*(1-x)^2*(1+x^2)) = x*(1+x-x^2+x^3)/(1-x^2-x^4+x^6).
a(n) = sin(Pi*n/2)/2 + (n-1)*(1 + (-1)^n)/4.
E.g.f.: (1/2)*(sin(x) + (1 + x)*sinh(x)). - G. C. Greubel, Aug 03 2024