A166556 Triangle read by rows, A000012 * A047999.
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 5, 2, 2, 1, 1, 6, 3, 2, 1, 2, 1, 7, 3, 3, 1, 3, 1, 1, 8, 4, 4, 2, 4, 2, 2, 1, 9, 4, 4, 2, 4, 2, 2, 1, 1, 10, 5, 4, 2, 4, 2, 2, 1, 2, 1, 11, 5, 5, 2, 4, 2, 2, 1, 3, 1, 1, 12, 6, 6, 3, 4, 2, 2, 1, 4, 2, 2, 1
Offset: 0
Examples
First few rows of the triangle = 1; 2, 1; 3, 1, 1; 4, 2, 2, 1; 5, 2, 2, 1, 1; 6, 3, 2, 1, 2, 1; 7, 3, 3, 1, 3, 1, 1; 8, 4, 4, 2, 4, 2, 2, 1; 9, 4, 4, 2, 4, 2, 2, 1, 1; 10, 5, 4, 2, 4, 2, 2, 1, 2, 1; 11, 5, 5, 2, 4, 2, 2, 1, 3, 1, 1; 12, 6, 6, 3, 4, 2, 2, 1, 4, 2, 2, 1; 13, 6, 6, 3, 5, 2, 2, 1, 5, 2, 2, 1, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
A166556:= func< n,k | (&+[(Binomial(j,k) mod 2): j in [k..n]]) >; [A166556(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 02 2024
-
Maple
A166556 := proc(n,k) local j; add(A047999(j,k),j=k..n) ; end proc: # R. J. Mathar, Jul 21 2016
-
Mathematica
A166556[n_, k_]:= Sum[Mod[Binomial[j,k], 2], {j,k,n}]; Table[A166556[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2024 *)
-
Python
def A166556(n,k): return sum(binomial(j,k)%2 for j in range(k,n+1)) print(flatten([[A166556(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 02 2024
Formula
Triangle read by rows, A000012 * A047999; where A000012 = an infinite lower triangular matrix with all 1's: [1; 1,1; 1,1,1;..]; and A047999 = Sierpinski's gasket.
The operation takes partial sums of Sierpinski's gasket terms, by columns.
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = Sum_{j=k..n} (binomial(j,k) mod 2).
T(n, 0) = A000027(n+1).
T(n, 1) = A004526(n+1).
T(n, 2) = A004524(n+1).
T(2*n, n) = A080100(n).
Sum_{k=0..n} T(n, k) = A006046(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A006046(floor(n/2)+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007729(n). (End)