cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166888 Triangle T(n,k), read by rows n>=0 with terms k=1..3^n, where row n lists the coefficients in the n-th iteration of x*(1+x)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 10, 18, 23, 22, 15, 6, 1, 1, 6, 27, 102, 333, 960, 2472, 5748, 12150, 23388, 40926, 64872, 92772, 119216, 137112, 140526, 127677, 102150, 71331, 42954, 21939, 9288, 3156, 822, 153, 18, 1, 1, 8, 52, 300, 1578, 7692, 35094, 150978
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2009

Keywords

Examples

			Triangle begins:
1;
1,2,1;
1,4,10,18,23,22,15,6,1;
1,6,27,102,333,960,2472,5748,12150,23388,40926,64872,92772,...;
1,8,52,300,1578,7692,35094,150978,615939,2393628,8892054,...;
1,10,85,660,4790,32920,215988,1360638,8265613,48585702,...;
1,12,126,1230,11385,101010,864813,7178700,57976074,456783888,...;
1,14,175,2058,23163,251832,2660028,27405798,276215313,...;
1,16,232,3192,42308,544600,6842220,84191772,1017153322,...;
1,18,297,4680,71388,1061712,15463512,221228244,3115739358,...;
1,20,370,6570,113355,1912590,31683051,516686346,8311401351,...;
1,22,451,8910,171545,3237520,60108576,1100544720,19906483168,...;
1,24,540,11748,249678,5211492,107184066,2176952910,43733857365,...;
...
The initial diagonals in this triangle begin:
A154256 = [1,2,10,102,1578,32920,864813,27405798,1017153322,...];
A119820 = [1,4,27,300,4790,101010,2660028,84191772,3115739358,...];
A166889 = [1,6,52,660,11385,251832,6842220,221228244,8311401351,...].
The diagonals are transformed one into the other by
triangle A166890, which begins:
1;
2,1;
9,4,1;
78,30,6,1;
1038,364,63,8,1;
18968,6233,986,108,10,1;
443595,139008,20685,2072,165,12,1;
12681960,3833052,545736,51494,3750,234,14,1; ...
		

Crossrefs

Cf. diagonals: A154256, A119820, A166889, variants: A166880, A122888.

Programs

  • PARI
    {T(n, k)=local(F=x+2*x^2+x^3, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, k, x)))}