cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166896 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 6, 16, 45, 142, 459, 1508, 5122, 17787, 62649, 223971, 811339, 2970032, 10974150, 40893393, 153512844, 580082454, 2205046961, 8427087958, 32362949488, 124837337235, 483508287359, 1879669861074, 7332469937755
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 + 1765*x^7/7 +...+ A166897(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A166894, A166898.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^3*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166897(n)*x^n/n ) where A166897(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k).