cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A166905 Triangle, read by rows, that transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Original entry on oeis.org

1, 1, 1, 6, 4, 1, 54, 33, 9, 1, 640, 380, 108, 16, 1, 9380, 5510, 1610, 270, 25, 1, 163576, 95732, 28560, 5148, 570, 36, 1, 3305484, 1933288, 586320, 110929, 13650, 1071, 49, 1, 75915708, 44437080, 13658904, 2677008, 353600, 31624, 1848, 64, 1, 1952409954
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Examples

			Triangle begins:
1;
1,1;
6,4,1;
54,33,9,1;
640,380,108,16,1;
9380,5510,1610,270,25,1;
163576,95732,28560,5148,570,36,1;
3305484,1933288,586320,110929,13650,1071,49,1;
75915708,44437080,13658904,2677008,353600,31624,1848,64,1;
1952409954,1144564278,355787568,71648322,9962949,973845,66150,2988,81,1;
55573310936,32638644236,10243342296,2107966432,304857190,31795560,2395120,127720,4590,100,1;
...
Coefficients in iterations of x*Catalan(x) form table A158825:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
...
This triangle T transforms rows into diagonals of A158825;
the initial diagonals begin:
A158831: [1,1,6,54,640,9380,163576,3305484,...];
A158832: [1,2,12,110,1330,19852,351792,7209036,...];
A158833: [1,3,20,195,2464,38052,693048,14528217,...];
A158834: [1,4,30,315,4200,67620,1273668,27454218,...].
For example:
T * [1,0,0,0,0,0,0,0,0,0,0,0,0, ...] = A158831;
T * [1,1,2,5,14,42,132,429,1430,...] = A158832;
T * [1,2,6,21,80,322,1348,5814, ...] = A158833;
T * [1,3,12,54,260, 1310, 6824, ...] = A158834.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(F=x, G=serreverse(x-x^2+O(x^(n+3))), M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+2)))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}

A166906 Column 1 of triangle A166905.

Original entry on oeis.org

1, 4, 33, 380, 5510, 95732, 1933288, 44437080, 1144564278, 32638644236, 1020503373032, 34708182795156, 1275532011982176, 50365443858930384, 2126358227959866224, 95577781657788563192, 4556923094838105968302
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Comments

Triangle A166905 transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, G=serreverse(x-x^2+O(x^(n+4))), M, N, P, m=n); M=matrix(m+3, m+3, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+3)))); polcoeff(F, c)); N=matrix(m+2, m+2, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+3)))); polcoeff(F, c)); P=matrix(m+2, m+2, r, c, M[r+1, c]); (P~*N~^-1)[n+2, 2]}

A166907 Column 2 of triangle A166905.

Original entry on oeis.org

1, 9, 108, 1610, 28560, 586320, 13658904, 355787568, 10243342296, 322939137312, 11063339361360, 409194048521778, 16249995494795920, 689585033717023224, 31140529927119263136, 1490994828293677370148, 75444108490820383882392
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Comments

Triangle A166905 transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, G=serreverse(x-x^2+O(x^(n+5))), M, N, P, m=n); M=matrix(m+4, m+4, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+4)))); polcoeff(F, c)); N=matrix(m+3, m+3, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+4)))); polcoeff(F, c)); P=matrix(m+3, m+3, r, c, M[r+1, c]); (P~*N~^-1)[n+3, 3]}

A166909 Row sums of triangle A166905.

Original entry on oeis.org

1, 2, 11, 97, 1145, 16796, 293623, 5950792, 137075837, 3535416136, 100902444181, 3156570232069, 107392381479683, 3947409366073512, 155880018189733841, 6581149438442041483, 295807451972657856921, 14102499966460374953016
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2009

Keywords

Comments

Triangle A166905 transforms rows into diagonals in the table A158825 of coefficients in successive iterations of x*Catalan(x) (cf. A000108).

Crossrefs

Programs

  • PARI
    {a(n)=local(F=x, G=serreverse(x-x^2+O(x^(n+3))), M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x;for(i=1, r+c-2, F=subst(F, x, G+x*O(x^(m+3)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x;for(i=1, r, F=subst(F, x, G+x*O(x^(m+3)))); polcoeff(F, c)); P=matrix(n+1, n+1, r, c, M[r+1, c]); M=(P~*N~^-1); sum(k=1,n+1,M[n+1,k])}
Showing 1-4 of 4 results.