cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A166967 Triangle read by rows, (Sierpinski's gasket, A047999) * A166966 (diagonalized as a lower triangular matrix).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 2, 3, 1, 0, 0, 0, 7, 1, 1, 0, 0, 7, 8, 1, 0, 2, 0, 7, 0, 17, 1, 1, 2, 3, 7, 8, 17, 27, 1, 0, 0, 0, 0, 0, 0, 0, 66, 1, 1, 0, 0, 0, 0, 0, 0, 66, 67, 1, 0, 2, 0, 0, 0, 0, 0, 66, 0, 135, 1, 1, 2, 3, 0, 0, 0, 0, 66, 67, 135, 204
Offset: 0

Views

Author

Gary W. Adamson, Oct 25 2009

Keywords

Comments

An eigentriangle (a given triangle * its own eigensequence); in this case A047999 * A166966.
Triangle A166967 has the properties of: row sums = the eigensequence, A166966 and sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 2, 3;
1, 0, 0, 0, 7;
1, 1, 0, 0, 7, 8;
1, 0, 2, 0, 7, 0, 17;
1, 1, 2, 3, 7, 8, 17, 27;
1, 0, 0, 0, 0, 0,..0,..0, 66;
1, 1, 0, 0, 0, 0,..0,..0, 66, 67;
1, 0, 2, 0, 0, 0,..0,..0, 66,..0, 135;
1, 1, 2, 3, 0, 0,..0,..0, 66, 67, 135, 204;
1, 0, 0, 0, 7, 0,..0,..0, 66,..0,...0,...0, 479;
1, 1, 0, 0, 7, 8,..0,..0, 66, 67,...0,...0, 479, 553
1, 0, 2, 0, 7, 0, 17,..0, 66,..0, 135,...0, 479,...0, 1182;
1, 1, 2, 3, 7, 8, 17, 27, 66, 67, 135, 204, 479, 553, 1182, 1189;
...
		

Crossrefs

Formula

Let Sierpinski's gasket, A047999 = S; and Q = the eigensequence of A047999 prefaced with a 1: (1, 1, 2, 3, 7, 8, 17,...) then diagonalized as an infinite lower triangular matrix: [1; 0,1; 0,0,2; 0,0,0,3; 0,0,0,0,7,...].
Triangle A166967 = S * Q.

A380652 Shifts left one place under the inverse modulo 2 binomial transform.

Original entry on oeis.org

1, 1, 0, -1, -1, -2, -1, 1, 4, 3, -1, -4, -1, -3, 0, 5, 5, 4, -1, -5, -2, -5, -1, 6, 9, 1, -6, -5, 13, 14, 11, 1, -38, -39, -1, 38, 41, 81, 42, -37, -163, -128, 37, 167, 56, 143, 11, -214, -253, -219, 36, 257, 149, 328, 105, -303, -624, -247, 313, 490, -455, -387, -476, -417, 1251, 1250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 29 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^ThueMorse[k] Mod[Binomial[n - 1, k], 2] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 65}]
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A380652(n): return sum((-A380652(n-k-1) if k.bit_count()&1 else A380652(n-k-1)) for k in range(n) if not (k&~(n-1))) if n else 1 # Chai Wah Wu, Feb 11 2025

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^A010060(k) * (binomial(n-1,k) mod 2) * a(n-k-1).

A331519 a(0) = 1; a(n) = Sum_{k=1..n} (binomial(n,k) mod 2) * a(k-1) * a(n-k).

Original entry on oeis.org

1, 1, 1, 3, 3, 9, 15, 63, 63, 189, 315, 1323, 1701, 6237, 12285, 59535, 59535, 178605, 297675, 1250235, 1607445, 5893965, 11609325, 56260575, 63761985, 213790185, 393824025, 1811590515, 2531725875, 10025634465, 21210236775, 109876902975, 109876902975, 329630708925
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Mod[Binomial[n, k], 2] a[k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}]

A331520 a(0) = a(1) = 1; a(n+2) = Sum_{k=0..n} (binomial(n,k) mod 2) * a(k).

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 3, 9, 7, 24, 8, 33, 17, 77, 27, 134, 66, 351, 67, 419, 135, 908, 204, 1469, 479, 3643, 553, 4572, 1182, 10227, 1889, 17125, 4641, 43640, 4642, 48283, 9285, 101211, 13929, 158786, 32504, 384441, 37153, 465259, 78957, 1020640, 125414, 1675453
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 19 2020

Keywords

Comments

Shifts 2 places left under the modulo 2 binomial transform.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Mod[Binomial[n - 2, k], 2] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 47}]

Formula

a(n) = Sum_{k=0..n} (-1)^A010060(n-k) * (binomial(n, k) mod 2) * a(k+2).
Showing 1-4 of 4 results.