A167028 Number of terms in the expansion of the determinant of a skew-symmetric matrix of order n.
0, 1, 0, 6, 0, 120, 0, 5250, 0, 395010, 0, 45197460, 0, 7299452160, 0, 1580682203100, 0, 441926274289500, 0, 154940341854097800, 0, 66565404923242024800, 0, 34389901168124209507800, 0, 21034386936107260971255000, 0, 15032296693671903309613950000, 0, 12411582569784462888618434640000, 0
Offset: 1
Examples
Example: the determinant of a skew symmetric matrix of order n=4 is det(A)=A(1,2)A(1,2)A(3,4)A(3,4) + 2A(1,2)A(2,3)A(1,4)A(3,4) -2A(1,2)A(2,4)A(1,3)A(3,4)+ A(1,3)A(1,3)A(2,4)A(2,4)-2A(1,3)A(2,4)A(1,4)A(2,3)+A(1,4)A(1,4)A(2,3)A(2,3).
Programs
-
Maple
for n from 1 to 20 do a[n]:=n!coeftayl( (1-x^2)^(-1/4)*exp(x^2/4),x=0,n) od;
-
Mathematica
Rest[CoefficientList[Series[(1-x^2)^(-1/4)*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 15 2015 *)
Formula
Exponential generating function: (1-x^2)^(-1/4) exp(x^2/4).
Asymptotics (for even n): a(n)= (n!/Pi)exp( (-3log(n)+1+log(2))/4 ) GAMMA(3/4) (1+O(1/n)). [corrected by Vaclav Kotesovec, Feb 15 2015]. More elegant form is a(n) ~ n! * 2^(1/4) * exp(1/4) * GAMMA(3/4) / (Pi * n^(3/4)).
Comments