cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167028 Number of terms in the expansion of the determinant of a skew-symmetric matrix of order n.

Original entry on oeis.org

0, 1, 0, 6, 0, 120, 0, 5250, 0, 395010, 0, 45197460, 0, 7299452160, 0, 1580682203100, 0, 441926274289500, 0, 154940341854097800, 0, 66565404923242024800, 0, 34389901168124209507800, 0, 21034386936107260971255000, 0, 15032296693671903309613950000, 0, 12411582569784462888618434640000, 0
Offset: 1

Views

Author

Pietro Majer, Oct 27 2009

Keywords

Comments

If n is odd a(n)=0.
Essentially a duplicate of A002370. - N. J. A. Sloane, Oct 27 2009

Examples

			Example: the determinant of a skew symmetric matrix of order n=4 is
det(A)=A(1,2)A(1,2)A(3,4)A(3,4) + 2A(1,2)A(2,3)A(1,4)A(3,4) -2A(1,2)A(2,4)A(1,3)A(3,4)+ A(1,3)A(1,3)A(2,4)A(2,4)-2A(1,3)A(2,4)A(1,4)A(2,3)+A(1,4)A(1,4)A(2,3)A(2,3).
		

Crossrefs

Programs

  • Maple
    for n from 1 to 20 do a[n]:=n!coeftayl( (1-x^2)^(-1/4)*exp(x^2/4),x=0,n) od;
  • Mathematica
    Rest[CoefficientList[Series[(1-x^2)^(-1/4)*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 15 2015 *)

Formula

Exponential generating function: (1-x^2)^(-1/4) exp(x^2/4).
Asymptotics (for even n): a(n)= (n!/Pi)exp( (-3log(n)+1+log(2))/4 ) GAMMA(3/4) (1+O(1/n)). [corrected by Vaclav Kotesovec, Feb 15 2015]. More elegant form is a(n) ~ n! * 2^(1/4) * exp(1/4) * GAMMA(3/4) / (Pi * n^(3/4)).