cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002370 a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 6, 120, 5250, 395010, 45197460, 7299452160, 1580682203100, 441926274289500, 154940341854097800, 66565404923242024800, 34389901168124209507800, 21034386936107260971255000, 15032296693671903309613950000, 12411582569784462888618434640000
Offset: 0

Views

Author

Keywords

References

  • A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
  • I. M. H. Etherington, Some problems of non-associative combinations, Edinburgh Math. Notes, 32 (1940), 1-6.
  • T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 282.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A167028.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 1, (2*n-1)^2 * a(n-1) -3*binomial(2*n-1, 3) *a(n-2))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := Gamma[n+1/2]*HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 17 2014, after Mark van Hoeij *)
  • PARI
    x='x+O('x^50);  v=Vec( (1-x)^(-1/4)*exp(x/4) );
    vector(#v,n, v[n]*(2*n-2)! ) \\ Joerg Arndt, Jan 21 2011

Formula

a(n) = (2*n)! * [x^(2*n)] (1-x^2)^(-1/4)*exp(x^2/4).
a(n) = 2^n*GAMMA(n+1/2)*A002801(n)/Pi^(1/2) = GAMMA(n+1/2)*hypergeom([1/4, -n],[],-4)/Pi^(1/2). - Mark van Hoeij, Oct 26 2011
a(n) ~ (2*n)! * exp(1/4) * GAMMA(3/4) / (Pi * sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010
Edited by Alois P. Heinz, Jan 21 2011

A167029 Difference between the number of positive and negative terms in the expansion of a skew symmetric matrix of order n.

Original entry on oeis.org

1, 0, 2, 0, 8, 0, 18, 0, 578, 0, -15460, 0, 1012512, 0, -81237604, 0, 8572174172, 0, -1139408178984, 0, 186543348044576, 0, -36888247922732008, 0, 8669441321229610968, 0, -2388740252077518073072, 0, 762715125987833507921408, 0, -279382350611903941569174000, 0
Offset: 1

Views

Author

Pietro Majer, Oct 27 2009

Keywords

Comments

For even n, a(n)=0.

Crossrefs

Cf. A167028.

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[Sqrt[Cosh[x]]*E^(x^2/4), {x, 0, 20}], x] * Range[0, 20]!]] (* Vaclav Kotesovec, Feb 15 2015 *)

Formula

E.g.f. (for offset 2): sqrt(cosh(x))*exp(x^2/4).
Asymptotics (for even n): a(n)=exp(Pi^2/16)*(2^(n-2))*(n!)*(Pi^(-n))*n^(3/4)*(1+O(1/n)) [This formula is wrong. - Vaclav Kotesovec, Feb 15 2015]
If n is odd |a(n)| ~ exp(-Pi^2/16) * 2^(n+1/2) * n! / (sqrt(n) * Pi^(n+1)). - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Vaclav Kotesovec, Feb 15 2015
Showing 1-2 of 2 results.