cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167155 Exponential primorial constant Sum_{k>=0} 1/A140319(k).

Original entry on oeis.org

1, 6, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2009

Keywords

Comments

This is a Liouville number and therefore transcendental.

Examples

			1 + 1/2^1 + 1/3^2 + 1/5^9 + 1/7^(5^9)+ ... = 1.6111116231111111111111111111111111111111...
Since 1/9 = 0.11111... and 1/5^9 = 512*10^(-9), the initial 10 digits are 1.611111623.
Since 1/A140319(4) = 1/7^1953125 = 7.7731519...*10^(-1650583), these digits are followed by a string of 1650573 "1"s, then followed by digits 8884263011....
		

Crossrefs

Cf. A080219.

Programs

  • Mathematica
    Clear[ep, s]; ep[0] = 1; ep[n_] := Prime[n]^ep[n-1]; s[n_] := s[n] = RealDigits[Sum[1/ep[k], {k, 0, n}], 10, 105] // First; s[n=1]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    1+1/2+1/3^2+1/5^9+1/7^5^9. /* The final dot is part of the code! */