cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140319 Exponential primorial: a(n)=prime(n)^a(n-1), a(0)=1, where prime(n)=A000040(n).

Original entry on oeis.org

1, 2, 9, 1953125
Offset: 0

Views

Author

Keywords

Comments

The next term is too large to include.

Examples

			a(1) = prime(1)^a(0) = 2^1 = 2.
a(2) = 3^2 = 9.
a(3) = 5^9 = 1953125.
a(4) = 7^1953125 has 1650583 digits, starting with 12864794... and ending in ...31920807. - _M. F. Hasler_, Nov 03 2009
		

Crossrefs

Cf. A152859 (alternate definition: start with a(0)=0), A167155.

Programs

  • Maple
    P:=proc(n) local a,i; a:=2; print(a); for i from 2 by 1 to n do a:=ithprime(i)^a; print(a); od; end: P(5);
  • Mathematica
    a[0]=1;a[n_]:=Prime[n]^a[n-1];Array[a,4,0] (* James C. McMahon, Jul 08 2025 *)
  • PARI
    A140319(n)=if(n,prime(n)^A140319(n-1),1) \\ M. F. Hasler, Nov 03 2009

Formula

Sum_{n>=0} 1/a(n) = A167155. - Amiram Eldar, Nov 15 2020

Extensions

Corrected offset/definition, and initial a(0)=1 from M. F. Hasler, Nov 03 2009

A080219 Decimal expansion of exponential factorial constant Sum_{n>=1} 1/A049384(n).

Original entry on oeis.org

1, 6, 1, 1, 1, 1, 4, 9, 2, 5, 8, 0, 8, 3, 7, 6, 7, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Feb 06 2003

Keywords

Comments

This is a Liouville number and therefore transcendental.

Examples

			1/1 + 1/2 + 1/9 + 1/262144 + ... = 1.611114925808376736111...
		

References

  • Contributed by Jonathan Sondow.

Crossrefs

Programs

  • Mathematica
    eFac[1] = 1; eFac[n_] := eFac[n] = n^eFac[n-1]; Clear[s]; s[m_] := s[m] = RealDigits[Sum[1/eFac[n], {n, 1, m}], 10, 100] // First; s[m = 1]; While[s[m] != s[m - 1], m++]; s[m] (* Jean-François Alcover, Feb 08 2013 *)
Showing 1-2 of 2 results.