cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A167155 Exponential primorial constant Sum_{k>=0} 1/A140319(k).

Original entry on oeis.org

1, 6, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2009

Keywords

Comments

This is a Liouville number and therefore transcendental.

Examples

			1 + 1/2^1 + 1/3^2 + 1/5^9 + 1/7^(5^9)+ ... = 1.6111116231111111111111111111111111111111...
Since 1/9 = 0.11111... and 1/5^9 = 512*10^(-9), the initial 10 digits are 1.611111623.
Since 1/A140319(4) = 1/7^1953125 = 7.7731519...*10^(-1650583), these digits are followed by a string of 1650573 "1"s, then followed by digits 8884263011....
		

Crossrefs

Cf. A080219.

Programs

  • Mathematica
    Clear[ep, s]; ep[0] = 1; ep[n_] := Prime[n]^ep[n-1]; s[n_] := s[n] = RealDigits[Sum[1/ep[k], {k, 0, n}], 10, 105] // First; s[n=1]; While[s[n] != s[n-1], n++]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
  • PARI
    1+1/2+1/3^2+1/5^9+1/7^5^9. /* The final dot is part of the code! */

A049384 a(0)=1, a(n+1) = (n+1)^a(n).

Original entry on oeis.org

1, 1, 2, 9, 262144
Offset: 0

Views

Author

Marcel Jackson (Marcel.Jackson(AT)utas.edu.au)

Keywords

Comments

An "exponential factorial".
Might also be called the "expofactorial" of n. - Walter Arrighetti (walter.arrighetti(AT)fastwebnet.it), Jan 16 2006
By Liouville's theorem, the exponential factorial constant A080219 = Sum_{n>=1} 1/a(n) is a Liouville number and therefore is transcendental. - Jonathan Sondow, Jun 17 2014

Examples

			a(4) = 4^9 = 262144.
a(5) = 5^262144 has 183231 decimal digits. - _Rick L. Shepherd_, Feb 15 2002
a(5) = ~6.2060698786608744707483205572846793 * 10^183230. - _Robert G. Wilson v_, Oct 24 2015
a(6) = 6^(5^262144) has 4.829261036048226... * 10^183230 decimal digits. - _Jack Braxton_, Feb 17 2023
		

References

  • David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
  • Underwood Dudley, "Mathematical Cranks", MAA 1992, p. 338.
  • F. Luca, D. Marques, Perfect powers in the summatory function of the power tower, J. Theor. Nombr. Bordeaux 22 (3) (2010) 703, doi:10.5802/jtnb.740

Crossrefs

Cf. A132859 (essentially the same).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, n^a(n-1))
        end:
    seq(a(n), n=0..4);  # Alois P. Heinz, Jan 17 2024
  • Mathematica
    Expofactorial[0] := 1; Expofactorial[n_Integer] := n^Expofactorial[n - 1]; Table[Expofactorial[n], {n, 0, 4}] (* Walter Arrighetti, Jan 24 2006 *)
    nxt[{n_,a_}]:={n+1,(n+2)^a}; Transpose[NestList[nxt,{0,1},4]][[2]] (* Harvey P. Dale, May 26 2013 *)
  • PARI
    a(n)=if(n>1,n^a(n-1),1) \\ Charles R Greathouse IV, Sep 13 2013

A352492 Powerful numbers whose prime indices are all prime numbers.

Original entry on oeis.org

1, 9, 25, 27, 81, 121, 125, 225, 243, 289, 625, 675, 729, 961, 1089, 1125, 1331, 1681, 2025, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 5625, 6075, 6561, 6889, 7225, 7803, 8649, 9801, 10125, 11881, 11979, 14641, 15125, 15129, 15625, 16129, 16875
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices (not prime factors) begin:
    1: {}
    9: {2,2}
   25: {3,3}
   27: {2,2,2}
   81: {2,2,2,2}
  121: {5,5}
  125: {3,3,3}
  225: {2,2,3,3}
  243: {2,2,2,2,2}
  289: {7,7}
  625: {3,3,3,3}
  675: {2,2,2,3,3}
  729: {2,2,2,2,2,2}
  961: {11,11}
For example, 675 = prime(2)^3 prime(3)^2 = 3^3 * 5^2.
		

Crossrefs

Powerful numbers are A001694, counted by A007690.
The version for prime exponents instead of indices is A056166, counted by A055923.
This is the powerful case of A076610 (products of A006450), counted by A000607.
The partitions with these Heinz numbers are counted by A339218.
A000040 lists primes.
A031368 lists primes of odd index, products A066208.
A101436 counts exponents in prime factorization that are themselves prime.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A053810 lists all numbers p^q with p and q prime, counted by A230595.
A257994 counts prime indices that are themselves prime, complement A330944.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&&Min@@Last/@FactorInteger[#]>1&]

Formula

Intersection of A001694 and A076610.
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/(p*(p-1))) = 1.24410463... - Amiram Eldar, May 04 2022

A067039 The tower function n^{(n-1)!}.

Original entry on oeis.org

1, 2, 9, 4096, 59604644775390625
Offset: 1

Views

Author

Amarnath Murthy, Dec 29 2001

Keywords

Comments

a(n) = n^(n-1)^(n-2)^...^3^2^1 with all power operators nested from the left. Nesting from the right gives A049384. - Gus Wiseman, Jul 03 2019

Examples

			a(4) = 4^(3!) = 4^6 = 4096.
		

Crossrefs

Programs

  • Maxima
    makelist((n+1)^(n!),n,0,6); /* Martin Ettl, Jan 17 2013 */

A260548 a(n) = prime(1)^prime(2)^prime(3)^...^prime(n).

Original entry on oeis.org

2, 8, 14134776518227074636666380005943348126619871175004951664972849610340958208
Offset: 1

Views

Author

Peter Woodward, Jul 29 2015

Keywords

Examples

			a(1) = 2; a(2) = 2^3; a(3) = 2^3^5.
		

Crossrefs

A152859 Tower of prime powers: a(n)=prime(n)^a(n-1), a(0)=0.

Original entry on oeis.org

0, 1, 3, 125, 4337654948097993282537354757263188251697832994620405101744893017744569432720994168089672192211758909320807
Offset: 0

Views

Author

ShaoJun Ying (dolphinysj(AT)gmail.com), Dec 14 2008

Keywords

Comments

Originally called "Exprimorial numbers (exponential prime factorials)", the strict analog would be "exponential primorial". [Editor's Note]

Examples

			a(4) = 7 ^ a(3) = 7 ^ 125.
a(5) = 11 ^ a(4) has approximately 4.5 * 10^105 digits, starting with 335856... and ending in ...815171.
		

Crossrefs

Cf. A140319 (alternate definition: start with a(0)=1). - Paolo P. Lava, Jul 31 2018

Programs

  • C
    unsigned long Exprimorial(unsigned int n) {
    if (n == 0) return 0;
    return pow(prime(n),Exprimorial(n - 1));
    }
    
  • PARI
    vector(4,i,t=if(i==1,1,prime(i)^t)) /* indices are shifted by 1 */ \\ M. F. Hasler, Nov 01 2009

Formula

a(n) = 0 if n = 0; a(n) = prime(n) ^ a(n - 1), n >= 1.

Extensions

Edited by M. F. Hasler, Nov 01 2009
Showing 1-6 of 6 results.