cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A351982 Number of integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 1, 3, 3, 3, 0, 1, 4, 5, 5, 3, 3, 5, 8, 5, 5, 6, 8, 8, 11, 7, 8, 10, 17, 14, 14, 12, 17, 17, 21, 18, 23, 20, 28, 27, 31, 27, 36, 32, 35, 37, 46, 41, 52, 45, 60, 58, 63, 59, 78, 71, 76, 81, 87, 80, 103, 107, 113, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Examples

			The partitions for n = 4, 6, 10, 19, 20, 25:
  (22)  (33)   (55)     (55333)     (7733)       (55555)
        (222)  (3322)   (55522)     (77222)      (77722)
               (22222)  (3333322)   (553322)     (5533333)
                        (33322222)  (5522222)    (5553322)
                                    (332222222)  (55333222)
                                                 (55522222)
                                                 (333333322)
                                                 (3333322222)
		

Crossrefs

The version for just prime parts is A000607, ranked by A076610.
The version for just prime multiplicities is A055923, ranked by A056166.
For odd instead of prime we have A117958, ranked by A352142.
The constant case is A230595, ranked by A352519.
Allowing any multiplicity > 1 gives A339218, ranked by A352492.
These partitions are ranked by A346068.
The non-constant case is A352493, ranked by A352518.
A000040 lists the primes.
A001221 counts constant partitions of prime length, ranked by A053810.
A001694 lists powerful numbers, counted A007690, weak A052485.
A038499 counts partitions of prime length.
A101436 counts parts of prime signature that are themselves prime.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are prime, nonprime A330944.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@PrimeQ/@#&&And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]

A369563 Powerful numbers whose prime factors are all of the form 4*k + 1.

Original entry on oeis.org

1, 25, 125, 169, 289, 625, 841, 1369, 1681, 2197, 2809, 3125, 3721, 4225, 4913, 5329, 7225, 7921, 9409, 10201, 11881, 12769, 15625, 18769, 21025, 21125, 22201, 24389, 24649, 28561, 29929, 32761, 34225, 36125, 37249, 38809, 42025, 48841, 50653, 52441, 54289, 54925
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004613.
Subsequence: A146945.
Similar sequence: A352492, A369564, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 1 && Last[#] > 1 &]; Select[Range[50000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 1 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 1 (mod 4)} (1 + 1/(p*(p-1))) = A175647 * A334424 = 1.0654356335... .

A369564 Powerful numbers whose prime factors are all of the form 4*k + 3.

Original entry on oeis.org

1, 9, 27, 49, 81, 121, 243, 343, 361, 441, 529, 729, 961, 1089, 1323, 1331, 1849, 2187, 2209, 2401, 3087, 3249, 3267, 3481, 3969, 4489, 4761, 5041, 5929, 6241, 6561, 6859, 6889, 8649, 9261, 9747, 9801, 10609, 11449, 11907, 11979, 12167, 14283, 14641, 16129, 16641
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004614.
Similar sequence: A352492, A369563, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 3 && Last[#] > 1 &]; Select[Range[20000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 3 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 3 (mod 4)} (1 + 1/(p*(p-1))) = 3*A013661*A334426/(4*A175647) = 1.2161513254... .

A369565 Powerful numbers whose prime factors are all of the form 3*k + 1.

Original entry on oeis.org

1, 49, 169, 343, 361, 961, 1369, 1849, 2197, 2401, 3721, 4489, 5329, 6241, 6859, 8281, 9409, 10609, 11881, 16129, 16807, 17689, 19321, 22801, 24649, 26569, 28561, 29791, 32761, 37249, 39601, 44521, 47089, 49729, 50653, 52441, 57967, 58081, 61009, 67081, 73441
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004611.
Similar sequence: A352492, A369563, A369564, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 3] == 1 && Last[#] > 1 &]; Select[Range[75000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%3 != 1 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 1 (mod 3)} (1 + 1/(p*(p-1))) = A175646 * A334477 = 1.0377399555...

A369566 Powerful numbers whose prime factors are all of the form 3*k + 2.

Original entry on oeis.org

1, 4, 8, 16, 25, 32, 64, 100, 121, 125, 128, 200, 256, 289, 400, 484, 500, 512, 529, 625, 800, 841, 968, 1000, 1024, 1156, 1331, 1600, 1681, 1936, 2000, 2048, 2116, 2209, 2312, 2500, 2809, 3025, 3125, 3200, 3364, 3481, 3872, 4000, 4096, 4232, 4624, 4913, 5000
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004612.
Similar sequence: A352492, A369563, A369564, A369565.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 3] == 2 && Last[#] > 1 &]; Select[Range[5000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%3 != 2 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 2 (mod 3)} (1 + 1/(p*(p-1))) = (9/8) * A333240 * A334479 = 1.6053538210...

A352493 Number of non-constant integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 4, 5, 3, 1, 3, 5, 7, 3, 5, 6, 8, 8, 11, 7, 6, 8, 15, 14, 14, 10, 15, 17, 21, 18, 23, 20, 28, 25, 31, 27, 35, 32, 33, 37, 46, 41, 50, 45, 58, 56, 63, 59, 78, 69, 76, 81, 85, 80, 103, 107, 111, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Examples

			The a(n) partitions for selected n (B = 11):
n = 10    16       19        20         25          28
   ---------------------------------------------------------------
    3322  5533     55333     7733       77722       BB33
          55222    55522     77222      5533333     BB222
          3322222  3333322   553322     5553322     775522
                   33322222  5522222    55333222    55533322
                             332222222  55522222    772222222
                                        333333322   3322222222222
                                        3333322222
		

Crossrefs

Constant partitions are counted by A001221, ranked by A000961.
Non-constant partitions are counted by A144300, ranked A024619.
The constant version is A230595, ranked by A352519.
This is the non-constant case of A351982, ranked by A346068.
These partitions are ranked by A352518.
A000040 lists the primes.
A000607 counts partitions into primes, ranked by A076610.
A001597 lists perfect powers, complement A007916.
A038499 counts partitions of prime length.
A053810 lists primes to primes.
A055923 counts partitions with prime multiplicities, ranked by A056166.
A257994 counts prime indices that are themselves prime.
A339218 counts powerful partitions into prime parts, ranked by A352492.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]
Showing 1-6 of 6 results.